Description Usage Arguments Details Examples
Identified differentially expressed genes from two different condition
1 |
object |
Quantified data obtained from gcProcess or preprocess function |
comparison |
Condition to be compared, currently working is "control-Treated" |
volcanoPlot |
by default False |
... |
This function identify differentially expressed genes between two condit ion. This function is different from DiffExpR function implemented in RNASeq ana lysis.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (object, comparison = NULL, volcanoPlot = FALSE, ...)
{
state <- object@phenoData$Treatment
f <- factor(state)
design <- model.matrix(~0 + f)
colnames(design) <- levels(f)
contrast.matrix <- limma::makeContrasts(comparison, levels = design)
fit <- limma::lmFit(object@qData, design)
fit <- limma::contrasts.fit(fit, contrast.matrix)
ebayes <- limma::eBayes(fit)
if (volcanoPlot == TRUE) {
jpeg("Valcanoplot.jpg")
limma::volcanoplot(ebayes, coef = 1, highlight = 0, names = fit$genes$ID,
xlab = "Log Fold Change", ylab = "Log Odds", pch = 16,
cex = 0.35)
dev.off()
}
object@diffExp <- limma::topTable(ebayes, number = Inf)
new("NcmsProcessData", object)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.