Description Usage Arguments Examples
View source: R/NcmsPreProcess.R
The preprocess function denoise, baseline correct, align, identified peaks and normalize them. The results can be visualize by thr baseline corrected and peak identification plots.
1 | preprocess(file, phenoData, method = "loess", cutoff = 100, plot = TRUE, ...)
|
file |
name and location of the folder having raw LCMS data |
phenoData |
text file contains name and condition of each file |
method |
|
cutoff |
|
plot |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (file, phenoData, method = "loess", cutoff = 100, plot = TRUE,
...)
{
library(PROcess)
if (plot == TRUE) {
pdf("BaselineCorrection.pdf")
bscorr <- rmBaseline(file, method = method)
dev.off()
normSpect <- PROcess::renorm(bscorr, cutoff = cutoff)
t <- as.matrix(rowMeans(normSpect))
tt <- cbind(rownames(t), t[, 1])
mode(tt) <- "double"
pdf("PeakIdentified.pdf")
Peaks <- PROcess::isPeak(tt[tt[, 1] > cutoff, ], plot = plot,
zerothrsh = 1, ratio = 0.1)
dev.off()
grandpvec <- round(Peaks[Peaks$peak, "mz"])
Quanti <- PROcess::getPeaks2(normSpect, grandpvec)
pData <- data.frame(phenoData)
new("NcmsProcessData", qData = Quanti, phenoData = pData,
BsData = bscorr, normSpectra = normSpect)
}
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.