preprocess: Function for processing raw LCMS data

Description Usage Arguments Examples

View source: R/NcmsPreProcess.R

Description

The preprocess function denoise, baseline correct, align, identified peaks and normalize them. The results can be visualize by thr baseline corrected and peak identification plots.

Usage

1
preprocess(file, phenoData, method = "loess", cutoff = 100, plot = TRUE, ...)

Arguments

file

name and location of the folder having raw LCMS data

phenoData

text file contains name and condition of each file

method
cutoff
plot
...

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (file, phenoData, method = "loess", cutoff = 100, plot = TRUE, 
    ...) 
{
    library(PROcess)
    if (plot == TRUE) {
        pdf("BaselineCorrection.pdf")
        bscorr <- rmBaseline(file, method = method)
        dev.off()
        normSpect <- PROcess::renorm(bscorr, cutoff = cutoff)
        t <- as.matrix(rowMeans(normSpect))
        tt <- cbind(rownames(t), t[, 1])
        mode(tt) <- "double"
        pdf("PeakIdentified.pdf")
        Peaks <- PROcess::isPeak(tt[tt[, 1] > cutoff, ], plot = plot, 
            zerothrsh = 1, ratio = 0.1)
        dev.off()
        grandpvec <- round(Peaks[Peaks$peak, "mz"])
        Quanti <- PROcess::getPeaks2(normSpect, grandpvec)
        pData <- data.frame(phenoData)
        new("NcmsProcessData", qData = Quanti, phenoData = pData, 
            BsData = bscorr, normSpectra = normSpect)
    }
  }

HTDA documentation built on May 2, 2019, 4:53 p.m.