Description Usage Arguments Value Author(s) References Examples
Fit MLE of Hardy-Weinberg equilibrium model for haplotype frequencies based on genotype data
Input is genotype data.
The haplotype model assumes Hardy-Weinberg equilibrium
P(H=(h_k,h_j)) = π_k pi_j
with K different haplotypes, where we parametrize the frequencies as
π_k= \frac{ \exp(θ_k) }{\exp(θ_1)+...+\exp(θ_{K-1})+1}
We allow a regression design on the haplotype parameters to reduce the dimensionality
θ = G α
where G is matrix of dimension (K-1) x (d-1). The α and θ version both have the same baseline that is a single haplotype.
1 2 3 | haplo.freqs(geno.type, geno.setup=NULL, Nit = 10,detail = 0,
haplo.freq = NULL, step = 1,lev.marq=1,min.lev.marq=0,
haplo.design=NULL,haplo.baseline=NULL,alpha=NULL)
|
geno.type |
a data.frame with the variables. |
geno.setup |
setup form genotype data. |
Nit |
number of iterations for Newton-Raphson algorithm. |
detail |
if 0 no details is printed during iterations, if 1 details are given. |
haplo.freq |
haplo type frequencies for starting values or for fixed values. |
step |
step size for iteration steps. |
lev.marq |
starting value for Levenberg-Marquart algorithm. |
min.lev.marq |
stopping value for Levenberg-Marquart algorithm after initial steps, min.lev.marq=0 is stopping value for Levenberg-Marquart algorithm after initial steps, min.lev.marq=0 is Newton-Raphson steps, that are needed to get correct standard errors. |
haplo.design |
design for haplo parameters, default is diagonal of size K-1 |
haplo.baseline |
gives the name of the geno.setup that should be used as baseline, default is last haplotype. |
alpha |
starting value of parameters for haplo.design |
returns an object of type "haplo.freq". With the following arguments:
haplo.alpha |
MLE of alpha parameters for haplo.design. |
haplo.pars |
MLE of haplotype parameters. |
haplo.freq |
MLE of haplotype frequencies. |
var.haplo.alpha |
variance matrix for alpha |
D2linv |
second derivative of log-likelihood. |
score |
score for likelihood. |
haplo.design |
design that relates haplotype parameters to alpha parameters. |
alpha.iid |
iid decomposition of alpha parameters, in this case score contributions for each subject for score of for log-likelihood. |
freq.names |
names of haplotypes |
Thomas Scheike and Jeremy Silver
Scheike, Martinussen and Silver, Haplotype effects for survival data, Submitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | n<-200
g<-matrix(rbinom(200*4,1,0.5),n,4); # simple genotypes
gs<-geno.setup(g);
hgs<-haplo.freqs(g,geno.setup=gs)
summary(hgs);
hgs$haplo.freq # haplo-type frequencies
hgs$haplo.pars # related parameters
hgs$haplo.alpha # related parameters haplo.pars = X alpha
hgs$var.haplo.alpha # variance of alpha parameters
# structured haplo-frequency model, baseline is set to "0,0"
gs<-geno.setup(g,haplo.baseline="0,0");
X<-matrix(1,3,1);
hgs<-haplo.freqs(g,geno.setup=gs,haplo.design=X)
summary(hgs);
hgs$haplo.freq # haplo-type frequencies
hgs$haplo.pars # related parameters
hgs$haplo.alpha # related parameters haplo.pars = X alpha
hgs$var.haplo.alpha # variance of alpha parameters
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.