Description Usage Arguments Details Value Author(s) References Examples
Fits an Cox-Aalen survival model. Time dependent variables and counting process data (multiple events per subject) are possible.
λ_{i}(t) = Y_i(t) ( X_{i}(h)^T(t) α(t) ) \exp(Z_{i}(h)^T β )
where X_i(h) and Z_i(h) are the design vectors specified by the design functions given in the call.
The model thus contains the Cox's regression model as special case.
Resampling is used for computing p-values for tests of time-varying effects. Test for proportionality is considered by considering the score processes for the proportional effects of model.
The modelling formula uses the standard survival modelling given in the survival package.
The haplotype model assumes Hardy-Weinberg equilibrium
P(H=(h_k,h_j)) = π_k pi_j
with K different haplotypes, where we parametrize the frequencies as
π_k= \frac{ \exp(θ_k) }{1+θ_1+...+θ_{K-1}+0}
We allow a regression design on the haplotype parameters to reduce the dimensionality
θ = G α
1 2 3 4 5 6 7 8 | haplo.surv(formula = formula(data),data=sys.parent(),
designfuncX,designfuncZ, beta = 0, match=FALSE,
Nit = 10, detail = 0, start.time = 0, max.time = NULL,
id = NULL, n.sim = 500, geno.type = NULL, geno.setup=NULL,
haplo.freq = NULL, fix.beta = 0, fix.haplofreq = 0,
two.stage = 0, weighted.test = 0, step = 1, lev.marq=1,
min.lev.marq=0, haplo.design=NULL,haplo.baseline=NULL,
alpha=NULL,resample.iid=1, covnamesX=NULL,covnamesZ=NULL)
|
formula |
a formula object with the response on the left of a '~' operator, and the independent terms on the right as regressors. The response must be a survival object as returned by the ‘Surv’ function. Terms with a proportional effect are specified by the wrapper prop(). Haplotype effects specified using the two designfunctions. |
data |
a data.frame with the variables. |
designfuncX |
R-function(x,z,h) that gives the X design given x,z and h. See ?design for more details on this. |
designfuncZ |
R-function(x,z,h) that gives the Z design given x,z and h. |
start.time |
start of observation period where estimates are computed. |
max.time |
end of observation period where estimates are computed. Estimates thus computed from [start.time, max.time]. Default is max of data. |
id |
For timevarying covariates the variable must associate each record with the id of a subject. |
n.sim |
number of simulations in resampling. |
weighted.test |
to compute a variance weighted version of the test-processes used for testing time-varying effects. |
beta |
starting value for relative risk estimates |
match |
if match is true it the matched survival model, see haplo.match. |
Nit |
number of iterations for Newton-Raphson algorithm. |
detail |
if 0 no details is printed during iterations, if 1,2,3 more details are given. |
geno.type |
geno types associated with subjects. |
geno.setup |
genotype setup based on genotype function. |
haplo.freq |
haplo type frequencies for starting values or for fixed values. |
fix.beta |
option for keeping beta fixed. |
fix.haplofreq |
option for keeping haplotype frequencies fixed. |
two.stage |
option to specify that genotype likelihood is based only on genotype likelihood, if two.stage=0 score equations for haplotype parameters also uses information from survival data. |
step |
step size for iteration steps. |
lev.marq |
starting value for Levenberg-Marquart algorithm. |
min.lev.marq |
stopping value for Levenberg-Marquart algorithm after initial steps, min.lev.marq=0 is stopping value for Levenberg-Marquart algorithm after initial steps, min.lev.marq=0 is Newton-Raphson steps, that are needed to get correct standard errors. |
haplo.design |
design for haplo parameters, default is diagonal of size K-1 |
haplo.baseline |
gives the name of the geno.setup that should be used as baseline. |
alpha |
starting value of parameters for haplo.design |
resample.iid |
set to 1 get i.i.d. decomposition of baseline and beta |
covnamesX |
names for output related to additive part of model. |
covnamesZ |
names for output related to proportional part of model. |
The data for a subject is presented as multiple rows or 'observations', each of which applies to an interval of observation (start, stop]. For counting process data with the )start,stop] notation is used the 'id' variable is needed to identify the records for each subject. The program assumes that there are no ties, and if such are present random noise is added to break the ties.
returns an object of type "cox.aalen". With the following arguments:
cum |
cumulative timevarying regression coefficient estimates are computed within the estimation interval. |
var.cum |
the martingale based pointwise variance estimates. |
robvar.cum |
robust pointwise variances estimates. |
gamma |
estimate of parametric components of model. |
var.gamma |
variance for gamma. |
robvar.gamma |
robust variance for gamma. |
haplo.pars |
estimates for haplotype frequency parameters. |
haplo.freqs |
estimates for haplotype frequencies based on parameters. |
haplo.alpha |
estimates for haplotype frequencies based on haplo.design. |
freq.names |
names of haplotypes. |
var.haplo.alpha |
variance matrix for alpha |
robvar.haplo.alpha |
variance matrix for alpha |
D2linv.all |
inverse of derivative of score for all parameters. |
D2linv.gamma |
inverse of derivative of score for relative risk parameters. |
D2linv.haplo.alpha |
inverse of derivative of score for alpha (haplo-frequency) parameters. |
score |
score of last iteration. |
obs.testBeq0 |
observed absolute value of supremum of cumulative components scaled with the variance. |
pval.testBeq0 |
p-value for covariate effects based on supremum test. |
sim.testBeq0 |
resampled supremum values. |
obs.testBeqC |
observed absolute value of supremum of difference between observed cumulative process and estimate under null of constant effect. |
pval.testBeqC |
p-value based on resampling. |
sim.testBeqC |
resampled supremum values. |
obs.testBeqC.is |
observed integrated squared differences between observed cumulative and estimate under null of constant effect. |
pval.testBeqC.is |
p-value based on resampling. |
sim.testBeqC.is |
resampled supremum values. |
conf.band |
resampling based constant to construct robust 95% uniform confidence bands. |
test.procBeqC |
observed test-process of difference between observed cumulative process and estimate under null of constant effect over time. |
sim.test.procBeqC |
list of 50 random realizations of test-processes under null based on resampling. |
covariance |
covariances for nonparametric terms of model. |
B.iid |
Resample processes for nonparametric terms of model. |
gamma.iid |
Resample processes for parametric terms of model. |
D2linv |
inverse of the derivative of the score function. |
score |
value of score for final estimates. |
test.procProp |
observed score process for proportional part of model. |
var.score |
variance of score process (optional variation estimator for beta.fixed=1 and robust estimator otherwise). |
pval.Prop |
p-value based on resampling. |
sim.supProp |
re-sampled absolute supremum values. |
sim.test.procProp |
list of 50 random realizations of test-processes for proportionality under the model based on resampling. |
haplo.design |
design that relates haplotype parameters to alpha parameters. |
Thomas Scheike
Scheike, Martinussen and Silver, Estimating haplotype effects for survival data, Biometrics, to appear.
Scheike, Martinussen and Zhang, The additive risk model for estimation of haplotype effects, Submitted.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 | library(timereg)
### Simulating data
n<-400;
haplo.types<-rbind(c(0,0),c(1,0),c(0,1),c(1,1))
### randomly selects haplotypes
pairs<-matrix(sample(1:4,n*2,replace=TRUE),n,2)
### observed genotype, haplotype-pair 1 = g[c(1,3),]
g<-matrix(haplo.types[pairs,],n,4)
gs<-geno.setup(g);
Z<-matrix(rnorm(n),n,1); Z<-cbind(Z,Z*0.5+1+rnorm(n))
X<-matrix(rbinom(n,1,0.5),n,1); X<-cbind(1,X);
Zh<- apply((g[,c(1,3)]==c(0,0)),1,prod)+
apply((g[,c(2,4)]==c(0,0)),1,prod) ### counts 0,0
### simulates model with baselines depending on X and
### proportional in Z and Zh
### Zh observed only through genotype
time<-exp(Z %*% c(-0.3,0.3) + Zh * 0.5 ) * rexp(n)/ X %*% c(0.2,0.5)
status<-(time<3); time[status==0]<-3
simdata=data.frame(time=time,status=status,
x1=X[,1],x2=X[,2],z1=Z[,1],z2=Z[,2],zh=Zh)
### specifies Cox-Aalen model
designX<-function(x,z,h) { ### design for baseline, does not depend on haplotype
return(x)
}
designZ<-function(x,z,h) { ### design for proportional part of model
h<-round(h);
zh<-(h[1]==0)+(h[2]==0) ### counts number of haplotype 0 = "0,0" see gs
y<-c(z,zh)
return(y)
}
designZ(c(1,3),c(1,1),c(0,0)); designZ(c(1,3),c(1,1),c(1,0))
hapfit<-haplo.freqs(g,geno.setup=gs)
out<-haplo.surv(Surv(time,status)~x2+prop(z1)+prop(z2),data=simdata,
designfuncX=designX,designfuncZ=designZ,geno.setup=gs,
two.stage=1,alpha=hapfit$haplo.alpha)
### MLE starting value alpha
summary(out);
plot(out,sim.ci=1) ### plots baseline with confidence bands
plot(out,score=1) ### score process test for proportionality
out$haplo.freq ### haplotype frequencies in model
### predicts survival with Z=0 and with 0 and 2 number of "0,0"
pout<-predict(out,X=rbind(c(1,1),c(1,1)),Z=rbind(c(0,0,0),c(0,0,2)))
plot(pout) ### the two survival curves
plot(pout,uniform=1,se=1) ### with 95 % confidence bands and intervals
########################################################################
#### structured haplotype model ########################################
########################################################################
X<-matrix(1,3,1);
hapfit<-haplo.freqs(g,geno.setup=gs,haplo.design=X)
out<-haplo.surv(Surv(time,status)~x2+prop(z1)+prop(z2),data=simdata,
designfuncX=designX,designfuncZ=designZ,geno.setup=gs,
two.stage=1,haplo.design=X,alpha=hapfit$haplo.alpha)
summary(out);
out$haplo.freq ### haplotype frequencies in model
par(mfrow=c(1,2))
plot(out,sim.ci=1)
###############################################################
### Fits additive hazard model ################################
###############################################################
### design for baseline, does not depend on haplotype
designXa<-function(x,z,h)
{
h<-round(h);
### counts number of haplotype 0 = "0,0" see gs for coding
zh<-(h[1]==0)+(h[2]==0)
y<-c(x,zh)
return(y)
}
### proportional part, returns dummy with fixed effect 0
designZa<-function(x,z,h)
{
return(z)
}
### Nit=1 because we start with the correct MLE haplotype estimates
out<-haplo.surv(Surv(time,status)~x2,data=simdata,
designfuncX=designXa,designfuncZ=designZa,geno.setup=gs,
fix.beta=1,two.stage=1,haplo.design=X,alpha=hapfit$haplo.alpha)
summary(out);
par(mfrow=c(1,3));
plot(out,sim.ci=1) ### plots baseline with confidence bands
### predicts survival with Z=0 and with 0 and 2 number of "0,0"
pout<-predict(out,X=rbind(c(1,1,0),c(1,1,2)),Z=rbind(0,0))
par(mfrow=c(1,3))
plot(pout,multiple=1,se=0,uniform=0,col=2:3)
plot(pout,uniform=1,se=1)
par(mfrow=c(1,2))
plot(pout,multiple=1,uniform=1,col=2:3,transparency=1)
plot(pout,multiple=1,uniform=1,col=2:3,transparency=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.