Description Usage Arguments Details Author(s) References See Also Examples
Plots a pirateplot with couulors according to model performance. The function can be used to compare means, distributions, and correlations (or any other metric from ObjFct) between different datasets and models. Thus this plot is almost an "eier-legende Wollmichsau" (german, animal that produces eggs, wool, milk and meet) for model-data comparison. The plot is based on the function pirateplot
1 2 3 4 5 |
x |
a data.frame with at least two columns |
ref |
Which column in x is the reference dataset? Also more than one reference can be provided, e.g. ref = c(1,2) will compute the objfct based on the combination of both datasets. |
objfct |
Which objective function metric should be used to create the colour palette? (see |
cols |
vector of colors from which the color palette should be interpolated |
brks |
break for colour scale |
names |
names of the datasets |
main |
title of the plot |
xlab |
label for x-axis |
ylab |
label for y-axis |
xlim |
limits for x-axis |
ylim |
limits for y-axis |
legend |
plot a legend? |
legend.only |
plot only a legend? |
cut.min |
Optional minimum value of the beans. |
cut.max |
Optional maximum value of the beans. |
avg |
plot average line? |
points |
plot points? |
bean |
plot beans (density estimates)? |
inf |
plot inference bands around mean? |
bar |
plot bars? |
... |
further arguments to |
No details.
Matthias Forkel <matthias.forkel@geo.tuwien.ac.at> [aut, cre]
No reference.
pirateplot, ObjFct, TaylorPlot, WollMilchSauPlot, ScatterPlot
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 | # create some data
obs <- rlnorm(500, 1, 1) # observations
sim1 <- obs * rnorm(500, 1, 0.5) # similar to obs
sim2 <- obs * rnorm(500, 1, 2) # less similar to obs
sim3 <- obs * rnorm(500, 1, 4) # less similar to obs
sim4 <- rlnorm(500, 1, 1) # same distribution but no correlation
sim5 <- rnorm(500, 4.4, 2) # similar mean but different distribution
x <- data.frame(obs, sim1, sim2, sim3, sim4, sim5)
x[x < 0] <- 0
# default plot
WollMilchSauPlot(x)
# with different objective function as colour
WollMilchSauPlot(x, objfct="IoA")
WollMilchSauPlot(x, objfct="Pbias")
WollMilchSauPlot(x, objfct="FV")
# axis labels and title
WollMilchSauPlot(x, ylab="Area (km2)", xlab="Groups", main="Comparison")
# remove certain elements from plot
WollMilchSauPlot(x, points=FALSE)
WollMilchSauPlot(x, bean=FALSE)
WollMilchSauPlot(x, points=FALSE, bean=FALSE)
WollMilchSauPlot(x, points=FALSE, bean=FALSE, bar=FALSE)
WollMilchSauPlot(x, inf=FALSE)
WollMilchSauPlot(x, inf=FALSE, avg=FALSE)
WollMilchSauPlot(x, avg=FALSE, bar=FALSE, inf=FALSE)
# different color palettes
WollMilchSauPlot(x, cols=c("blue", "red"))
WollMilchSauPlot(x, cols=c("blue", "grey", "red"))
WollMilchSauPlot(x, cols=rainbow(10))
WollMilchSauPlot(x, objfct="IoA", cols=heat.colors(5))
WollMilchSauPlot(x, objfct="RMSE", cols=rev(heat.colors(5)))
# without legend (but using an objective function to colour)
WollMilchSauPlot(x, legend=FALSE)
# only legend
WollMilchSauPlot(x, legend.only=TRUE)
# without using an objective function - categorial colours
WollMilchSauPlot(x, objfct=NULL)
# different example data
obs <- rnorm(500, 5, 1)
sim1 <- obs * rnorm(500, 1, 0.2) # similar to obs
sim2 <- obs * rnorm(500, 2, 1) # bias
sim3 <- obs * rlnorm(500, 1, 0.1) # less similar to obs but highly correlated
x <- data.frame(obs, sim1, sim2, sim3)
WollMilchSauPlot(x)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.