mice.impute.rq: QR-based Multiple Imputation

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

This function is used to multiply impute missing values using quantile regression imputation models.

Usage

1
2
3
4
mice.impute.rq(y, ry, x, tsf = "none", symm = TRUE,	dbounded = FALSE,
	lambda = NULL, epsilon = 0.001, method.rq = "fn", ...)
mice.impute.rrq(y, ry, x, tsf = "none", symm = TRUE, dbounded = FALSE,
	lambda = NULL, epsilon = 0.001, method.rq = "fn", ...)

Arguments

y

numeric vector of length n with nmis missing values.

ry

missing data indicator. Logical vector of length n: FALSE if y is missing, TRUE if y is observed.

x

matrix n x p of completely observed covariates.

tsf

transformation to be used. Possible options are mcjI for Proposal I, bc for Box-Cox and ao for Aranda-Ordaz transformation models. No transformation is used by default.

symm

logical flag. If TRUE (default) a symmetric transformation is used.

dbounded

logical flag. If TRUE the response y is assumed to be bounded between 0 and 1.

lambda

a numerical value for the transformation parameter. This is provided by the user or set to zero if not specified.

epsilon

constant used to trim the values of the sample space.

method.rq

linear programming algorithm (see rq).

...

additional arguments.

Details

This function implements the methods proposed by Geraci (2013) to impute missing values using quantile regression models. Uniform values are sampled from [epsilon, 1 - epsilon], therefore allowing the interval to be bounded away from 0 and 1 (default is 0.001). It is possible to specify a quantile regression transformation model with parameter lambda (Geraci and Jones). The function mice.impute.rrq performs imputation based on restricted regression quantiles to avoid quantile crossing (see Geraci 2013 for details).

Value

A vector of length nmis with imputations.

Author(s)

Marco Geraci

References

Bottai M, Zhen H. Multiple imputation based on conditional quantile estimation. Epidemiology, Biostatistics and Public Health 2013;10(1):e8758-1.

Geraci M. Estimation of regression quantiles in complex surveys with data missing at random: An application to birthweight determinants. Statistical Methods in Medical Research 2013. doi:10.1177/0962280213484401

Geraci M and Jones MC. Improved transformation-based quantile regression. Canadian Journal of Statistics 2015;43(1):118-132.

van Buuren S and Groothuis-Oudshoorn K (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. URL http://www.jstatsoft.org/v45/i03/.

See Also

ao, tsrq

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
## Not run: 

# Load package 'mice'
require(mice)

# Load data nhanes
data(nhanes)
nhanes2 <- nhanes
nhanes2$hyp <- as.factor(nhanes2$hyp)

# Impute continuous variables using quantile regression
set.seed(199)
imp <- mice(nhanes2, meth = c("polyreg", "rq", "logreg", "rq"), m = 5)

# estimate linear regression and pool results
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
pool(fit)

# Impute using restricted quantile regression
set.seed(199)
imp <- mice(nhanes2, meth = c("polyreg", "rrq", "logreg", "rrq"), m = 5)
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
pool(fit)

# Impute using quantile regression + Box-Cox transformation with parameter
# lambda = 0 (ie, log transformation)

set.seed(199)
imp <- mice(nhanes2, meth = c("polyreg", "rq", "logreg", "rq"), m = 5, tsf = "bc", lambda = 0)
fit <- lm.mids(bmi ~ hyp + chl, data = imp)
pool(fit)



## End(Not run)

Qtools documentation built on May 2, 2019, 6:09 p.m.