rq.counts: Quantile Regression for Counts

Description Usage Arguments Details Value Author(s) References Examples

Description

This function is used to fit a quantile regression model when the response is a count variable.

Usage

1
2
3
4
rq.counts(formula, tau = 0.5, data, tsf = "bc", symm = TRUE,
	lambda = 0,	weights = NULL, offset = NULL, contrasts = NULL,
	M = 50, zeta = 1e-05, B = 0.999, cn = NULL, alpha = 0.05,
	method = "fn")

Arguments

formula

an object of class formula: a symbolic description of the model to be fitted.

tau

quantile to be estimated.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which lqm is called.

tsf

transformation to be used. Possible options are mcjI for Proposal I and bc for Box-Cox. The latter is the default, with lambda = 0, i.e. the logarithmic transformation.

symm

logical flag. If TRUE and tsf = 'mcj', the symmetric Proposal I transformation is used.

lambda

a numerical value for the transformation parameter. This is provided by the user or set to zero if not specified.

weights

an optional vector of weights to be used in the fitting process.

offset

an optional offset to be included in the model frame.

contrasts

an optional list. See the contrasts.arg of model.matrix.default.

M

number of dithered samples.

zeta

small constant (see References).

B

right boundary for uniform random noise U[0,B] to be added to the response variable (see References).

cn

small constant to be passed to Fn (see Theorem 3, Machado and Santos Silva).

alpha

significance level.

method

estimation method for the fitting process. See rq.

Details

A linear quantile regression model is fitted to the log–transformed response. Additional tranformation functions will be implemented. The notation used here follows closely that of Machado and Santos Silva (2005). This function is based on routines from package quantreg (Koenker, 2013). See also lqm.counts from package lqmm (Geraci, 2014) for Laplace gradient estimation.

Value

a list of class rq.counts containing the following components

call

the matched call.

method

the fitting algorithm for rq.

x

the model matrix.

y

the model response.

tau

the order of the estimated quantile(s).

tsf

tranformation used (see also attributes(tsf)).

coefficients

regression quantile (on the log–scale).

fitted.values

fitted values (on the response scale).

tTable

coefficients, standard errors, etc.

offset

offset.

M

specified number of dithered samples for standard error estimation.

Mn

actual number of dithered samples used for standard error estimation that gave an invertible D matrix (Machado and Santos Silva, 2005).

InitialPar

starting values for coefficients.

terms

the terms object used.

term.labels

names of coefficients.

rdf

the number of residual degrees of freedom.

Author(s)

Marco Geraci

References

Geraci M and Jones MC. Improved transformation-based quantile regression. Canadian Journal of Statistics 2015;43(1):118-132.

Koenker R (2013). quantreg: Quantile Regression. R package version 5.05. URL http://CRAN.R-project.org/package=quantreg.

Machado JAF and Santos Silva JMC (2005). Quantiles for counts. Journal of the American Statistical Association, 100(472), 1226–1237.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
# Esterase data
data(esterase)

# Fit quantiles 0.25 and 0.75
fit1 <- rq.counts(Count ~ Esterase, tau = 0.25, data = esterase, M = 50)
coef(fit1)
fit2 <- rq.counts(Count ~ Esterase, tau = 0.75, data = esterase, M = 50)
coef(fit2)

# Plot
with(esterase, plot(Count ~ Esterase))
lines(esterase$Esterase, fit1$fitted.values, col = "blue")
lines(esterase$Esterase, fit2$fitted.values, col = "red")
legend(8, 1000, lty = c(1,1), col = c("blue", "red"), legend = c("tau = 0.25","tau = 0.75"))

Qtools documentation built on May 2, 2019, 6:09 p.m.