Description Details Author(s) References Examples
A high-performance computing toolset for relatedness and principal component analysis in Genome-wide Association Studies
Package: | SNPRelate |
Type: | Package |
Version: | 0.9.14 |
Date: | 2013-09-04 |
License: | GPL version 3 |
Depends: | gdsfmt (>= 0.9.7) |
The genotypes stored in GDS format can be analyzed by the R functions in SNPRelate, which utilize the multi-core feature of machine for a single computer.
Webpage: http://corearray.sourceforge.net/
Tutorial: http://corearray.sourceforge.net/tutorials/SNPRelate/
Forums: http://sourceforge.net/projects/corearray/forums
Xiuwen Zheng zhengx@u.washington.edu
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS. A High-performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics (2012); doi: 10.1093/bioinformatics/bts610
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 | ####################################################################
# Convert the PLINK BED file to the GDS file
#
# PLINK BED files
bed.fn <- system.file("extdata", "plinkhapmap.bed", package="SNPRelate")
bim.fn <- system.file("extdata", "plinkhapmap.bim", package="SNPRelate")
fam.fn <- system.file("extdata", "plinkhapmap.fam", package="SNPRelate")
# convert
snpgdsBED2GDS(bed.fn, fam.fn, bim.fn, "HapMap.gds")
####################################################################
# Principal Component Analysis
#
# open
genofile <- openfn.gds("HapMap.gds")
RV <- snpgdsPCA(genofile)
plot(RV$eigenvect[,2], RV$eigenvect[,1], xlab="PC 2", ylab="PC 1",
col=rgb(0,0,150, 50, maxColorValue=255), pch=19)
# close
closefn.gds(genofile)
####################################################################
# Identity-By-Descent (IBD) Analysis
#
# open
genofile <- openfn.gds(snpgdsExampleFileName())
RV <- snpgdsIBDMoM(genofile)
flag <- lower.tri(RV$k0)
plot(RV$k0[flag], RV$k1[flag], xlab="k0", ylab="k1",
col=rgb(0,0,150, 50, maxColorValue=255), pch=19)
abline(1, -1, col="red", lty=4)
# close
closefn.gds(genofile)
####################################################################
# Identity-By-State (IBS) Analysis
#
# open
genofile <- openfn.gds(snpgdsExampleFileName())
RV <- snpgdsIBS(genofile)
m <- 1 - RV$ibs
colnames(m) <- rownames(m) <- RV$sample.id
GeneticDistance <- as.dist(m[1:45, 1:45])
HC <- hclust(GeneticDistance, "ave")
plot(HC)
# close
closefn.gds(genofile)
####################################################################
# Linkage Disequilibrium (LD) Analysis
#
# open an example dataset (HapMap)
genofile <- openfn.gds(snpgdsExampleFileName())
snpset <- read.gdsn(index.gdsn(genofile, "snp.id"))[1:200]
L1 <- snpgdsLDMat(genofile, snp.id=snpset, method="composite", slide=-1)
# plot
image(abs(L1$LD), col=terrain.colors(64))
# close the genotype file
closefn.gds(genofile)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.