Description Usage Arguments Details Value Author(s) References See Also Examples
Calculate IBD coefficients by KING method of moment.
1 2 3 4 |
gdsobj |
a GDS file object ( |
sample.id |
a vector of sample id specifying selected samples; if NULL, all samples are used |
snp.id |
a vector of snp id specifying selected SNPs; if NULL, all SNPs are used |
autosome.only |
if TRUE, use autosomal SNPs only |
remove.monosnp |
if TRUE, remove monomorphic SNPs |
maf |
to use the SNPs with ">= maf" only; if NaN, no MAF threshold |
missing.rate |
to use the SNPs with "<= missing.rate" only; if NaN, no missing threshold |
type |
|
family.id |
if |
num.thread |
the number of CPU cores used |
verbose |
if TRUE, show information |
KING IBD estimator is a moment estimator, and it is computationally efficient
relative to MLE method. The approaches include "KING-robust"
– robust
relationship inference within or across families in the presence of population
substructure, and "KING-homo"
– relationship inference in a homogeneous
population.
With "KING-robust"
, the function would return the proportion of SNPs
with zero IBS (IBS0
) and kinship coefficient (kinship
). With
"KING-homo"
it would return the probability of sharing one IBD (k1
)
and the probability of sharing zero IBD (k0
).
The minor allele frequency and missing rate for each SNP passed in snp.id
are calculated over all the samples in sample.id
.
Return a list:
sample.id |
the sample ids used in the analysis |
snp.id |
the SNP ids used in the analysis |
k0 |
IBD coefficient, the probability of sharing zero IBD |
k1 |
IBD coefficient, the probability of sharing one IBD |
IBS0 |
proportion of SNPs with zero IBS |
kinship |
the estimated kinship coefficients, if the parameter |
Xiuwen Zheng
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010 Nov 15;26(22):2867-73. doi: 10.1093/bioinformatics/btq559. Epub 2010 Oct 5.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | # open an example dataset (HapMap)
genofile <- openfn.gds(snpgdsExampleFileName())
# CEU population
samp.id <- read.gdsn(index.gdsn(genofile, "sample.id"))
CEU.id <- samp.id[read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="CEU"]
#### KING-robust: relationship inference in the presence of population stratification
#### robust relationship inference across family
ibd.robust <- snpgdsIBDKING(genofile, sample.id=CEU.id, family.id=NULL)
names(ibd.robust)
# [1] "sample.id" "snp.id" "afreq" "IBS0" "kinship"
# select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust, 1/32)
head(dat)
plot(dat$IBS0, dat$kinship, xlab="Proportion of Zero IBS",
ylab="Estimated Kinship Coefficient (KING-robust)")
#### KING-robust: relationship inference in the presence of population stratification
#### within- and between-family relationship inference
# incorporate with pedigree information
family.id <- read.gdsn(index.gdsn(genofile, "sample.annot/family.id"))
family.id <- family.id[match(CEU.id, samp.id)]
ibd.robust2 <- snpgdsIBDKING(genofile, sample.id=CEU.id, family.id=family.id)
names(ibd.robust2)
# select a set of pairs of individuals
dat <- snpgdsIBDSelection(ibd.robust2, 1/32)
head(dat)
plot(dat$IBS0, dat$kinship, xlab="Proportion of Zero IBS",
ylab="Estimated Kinship Coefficient (KING-robust)")
#### KING-homo: relationship inference in a homogeneous population
ibd.homo <- snpgdsIBDKING(genofile, sample.id=CEU.id, type="KING-homo")
names(ibd.homo)
# "sample.id" "snp.id" "afreq" "k0" "k1"
# select a subset of pairs of individuals
dat <- snpgdsIBDSelection(ibd.homo, 1/32)
head(dat)
plot(dat$k0, dat$kinship, xlab="Pr(IBD=0)",
ylab="Estimated Kinship Coefficient (KING-homo)")
# close the genotype file
closefn.gds(genofile)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.