Description Usage Arguments Examples
View source: R/Rallfun-v24.R View source: R/Rallfun-v24.R
The default number of bootstrap samples is nboot=2000
win is the amount of Winsorizing before bootstrapping when WIN=T.
Missing values are automatically removed.
null.value is null value. That test hypothesis trimmed mean equals null.value.
plotit=T gives a plot of the bootstrap values pop=1 results in the expected frequency curve. pop=2 kernel density estimate pop=3 boxplot pop=4 stem-and-leaf pop=5 histogram pop=6 adaptive kernel density estimate.
fr controls the amount of smoothing when plotting the bootstrap values via the function rdplot. fr=NA means the function will use fr=.8 (When plotting bivariate data, rdplot uses fr=.6 by default.)
1 |
x |
|
tr |
|
alpha |
|
nboot |
|
WIN |
|
win |
|
plotit |
|
pop |
|
null.value |
|
pr |
|
xlab |
|
fr |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, tr = 0.2, alpha = 0.05, nboot = 2000, WIN = F, win = 0.1,
plotit = F, pop = 1, null.value = 0, pr = T, xlab = "X",
fr = NA)
{
if (pr) {
print("The p-value returned by the this function is based on the")
print("null value specified by the argument null.value, which defaults to 0")
}
x <- x[!is.na(x)]
if (WIN) {
if (win > tr)
stop("The amount of Winsorizing must be <= to the amount of trimming")
x <- winval(x, win)
}
crit <- alpha/2
icl <- round(crit * nboot) + 1
icu <- nboot - icl
bvec <- NA
set.seed(2)
print("Taking bootstrap samples. Please wait.")
data <- matrix(sample(x, size = length(x) * nboot, replace = T),
nrow = nboot)
bvec <- apply(data, 1, mean, tr)
bvec <- sort(bvec)
p.value <- mean(bvec < null.value) + 0.5 * mean(bvec == null.value)
p.value <- 2 * min(p.value, 1 - p.value)
ci <- NA
ci[1] <- bvec[icl]
ci[2] <- bvec[icu]
if (plotit) {
if (pop == 1)
rdplot(as.vector(bvec), fr = fr, xlab = xlab)
if (pop == 2)
kdplot(as.vector(bvec), rval = rval)
if (pop == 3)
boxplot(as.vector(bvec))
if (pop == 4)
stem(as.vector(bvec))
if (pop == 5)
hist(as.vector(bvec))
if (pop == 6)
akerd(as.vector(bvec), xlab = xlab)
}
list(ci = ci, p.value = p.value)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.