Description Usage Arguments Examples
By default, MOM-estimators are compared.
Setting est=mean, for example, will result in a percentile bootstrap confidence interval for the difference between means. Setting est=onestep will compare M-estimators of location.
The default number of bootstrap samples is nboot=2000.
1 |
x |
|
y |
|
alpha |
|
nboot |
|
est |
|
SEED |
|
pr |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (x, y, alpha = 0.05, nboot = 2000, est = onestep, SEED = TRUE,
pr = TRUE, ...)
{
x <- x[!is.na(x)]
y <- y[!is.na(y)]
if (SEED)
set.seed(2)
if (pr)
print("Taking bootstrap samples. Please wait.")
datax <- matrix(sample(x, size = length(x) * nboot, replace = T),
nrow = nboot)
datay <- matrix(sample(y, size = length(y) * nboot, replace = T),
nrow = nboot)
bvecx <- apply(datax, 1, est, ...)
bvecy <- apply(datay, 1, est, ...)
bvec <- sort(bvecx - bvecy)
low <- round((alpha/2) * nboot) + 1
up <- nboot - low
temp <- sum(bvec < 0)/nboot + sum(bvec == 0)/(2 * nboot)
sig.level <- 2 * (min(temp, 1 - temp))
se <- var(bvec)
list(ci = c(bvec[low], bvec[up]), p.value = sig.level, sq.se = se)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.