Nothing
# Figure 4.1-1
histogram(~gene.length, HumanGeneLengths,
subset=gene.length < 15000,
xlab="Gene length (number of nucleotides)",
n=30)
# Table 4.1-1
mean(HumanGeneLengths$gene.length)
# this computes the SAMPLE standard deviation
sd(HumanGeneLengths$gene.length)
# For the population variance, SS should divide by n rather than n-1
n <- nrow(HumanGeneLengths)
pop.sd <- sd(HumanGeneLengths$gene.length) * sqrt((n-1)/n); pop.sd
# Figure 4.1-2
HundredGenes <- sample(HumanGeneLengths,100)
histogram(~gene.length, HundredGenes,
subset=gene.length < 15000,
xlab="Gene length (number of nucleotides)",
n=30)
# Table 4.1-2 (won't match exactly because of random sampling)
favstats(HundredGenes$gene.length)
# Figure 4.1-3
sampleMeans <- replicate (5000, mean(sample(HumanGeneLengths,100)$gene.length))
histogram(sampleMeans,type='percent',n=40)
# Figure 4.1-4
sampleMeans20 <- replicate (5000, mean(sample(HumanGeneLengths,20)$gene.length))
sampleMeans500 <- replicate (5000, mean(sample(HumanGeneLengths,500)$gene.length))
means <- data.frame(
mean = c( sampleMeans, sampleMeans20, sampleMeans500 ),
size = rep(c(100,20,500), each=5000)
)
histogram(~mean|paste('n =',size), data=means, type='density', n=100, xlim=c(1200,5200),
layout=c(1,3))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.