Description Usage Format Details Source References Examples
Simulated example for occupancy model, see code below.
1 |
A data frame with 1000 observations on the following 6 variables.
Ytrue occupancy
Wobservations
x1random variables used as covariates
x2random variables used as covariates
x3random variables used as covariates
x4random variables used as covariates
p.occprobability of occurrence
p.detprobability of detection
This simulated example corresponds to the ZI Binomial model implemented in the function svocc.
Simulated example.
Lele, S.R., Moreno, M. and Bayne, E. (2011) Dealing with detection error in site occupancy surveys: What can we do with a single survey? Journal of Plant Ecology, 5(1), 22–31.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | data(datocc)
str(datocc)
## Not run:
## simulation
n <- 1000
set.seed(1234)
x1 <- runif(n, -1, 1)
x2 <- as.factor(rbinom(n, 1, 0.5))
x3 <- rnorm(n)
x4 <- rnorm(n)
beta <- c(0.6, 0.5)
theta <- c(0.4, -0.5, 0.3)
X <- model.matrix(~ x1)
Z <- model.matrix(~ x1 + x3)
mu <- drop(X %*% beta)
nu <- drop(Z %*% theta)
p.occ <- binomial("cloglog")$linkinv(mu)
p.det <- binomial("logit")$linkinv(nu)
Y <- rbinom(n, 1, p.occ)
W <- rbinom(n, 1, Y * p.det)
datocc <- data.frame(Y, W, x1, x2, x3, x4, p.occ, p.det)
## End(Not run)
|
Loading required package: Formula
Loading required package: stats4
Loading required package: pbapply
detect 0.4-2 2018-08-29
'data.frame': 1000 obs. of 8 variables:
$ Y : num 1 1 1 1 1 1 0 0 0 1 ...
$ W : num 1 0 0 0 1 1 0 0 0 1 ...
$ x1 : num -0.773 0.245 0.219 0.247 0.722 ...
$ x2 : Factor w/ 2 levels "0","1": 2 1 1 1 2 1 1 1 2 2 ...
$ x3 : num -1.205 0.301 -1.539 0.635 0.703 ...
$ x4 : num -0.9738 -0.0996 -0.1107 1.1922 -1.6559 ...
$ p.occ: num 0.71 0.872 0.869 0.873 0.927 ...
$ p.det: num 0.605 0.591 0.457 0.615 0.562 ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.