positioning.functions: Built-in Positioning Methods for direct label placement

Description Author(s) Examples

Description

When adding direct labels to a grouped plot, label placement can be specified using a Positioning Method (or a list of them), of the form function(d,...), where d is a data frame of the points to plot, with columns x y groups. The job of the Positioning Method(s) is to return the position of each direct label you want to plot as a data frame, with 1 row for each label. Thus normally a Positioning Method will return 1 row for each group. Several built-in Positioning Methods are discussed below, but you can also create your own, either from scratch or by using dl.indep and dl.trans.

Author(s)

Toby Dylan Hocking <[email protected]>

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
## Not run: 
### contourplot Positioning Methods
for(p in list({
## Example from help(contourplot)
require(stats)
require(lattice)
attach(environmental)
ozo.m <- loess((ozone^(1/3)) ~ wind * temperature * radiation,
               parametric = c("radiation", "wind"), span = 1, degree = 2)
w.marginal <- seq(min(wind), max(wind), length.out = 50)
t.marginal <- seq(min(temperature), max(temperature), length.out = 50)
r.marginal <- seq(min(radiation), max(radiation), length.out = 4)
wtr.marginal <- list(wind = w.marginal, temperature = t.marginal,
                     radiation = r.marginal)
grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
detach(environmental)
library(ggplot2)
p <- ggplot(grid,aes(wind,temperature,z=fit))+
  stat_contour(aes(colour=..level..))+
  facet_wrap(~radiation)

},
{
## example from help(stat_contour)
library(reshape2)
volcano3d <- melt(volcano)
names(volcano3d) <- c("x", "y", "z")
library(ggplot2)
p <- ggplot(volcano3d, aes(x, y, z = z))+
  stat_contour(aes(colour = ..level..))
})){
  print(direct.label(p,"bottom.pieces"))
  print(direct.label(p,"top.pieces"))
}

### densityplot Positioning Methods
for(p in list({
data(Chem97,package="mlmRev")
library(lattice)
p <- densityplot(~gcsescore|gender,Chem97,
            groups=factor(score),layout=c(1,2),
            n=500,plot.points=FALSE)
},
{
library(reshape2)
iris2 <- melt(iris,id="Species")
library(lattice)
p <- densityplot(~value|variable,iris2,groups=Species,scales="free")
},
{
loci <- data.frame(ppp=c(rbeta(800,10,10),rbeta(100,0.15,1),rbeta(100,1,0.15)),
                   type=factor(c(rep("NEU",800),rep("POS",100),rep("BAL",100))))
library(ggplot2)
p <- qplot(ppp,data=loci,colour=type,geom="density")
})){
  print(direct.label(p,"top.bumptwice"))
  print(direct.label(p,"top.bumpup"))
  print(direct.label(p,"top.points"))
}

### dotplot Positioning Methods
for(p in list({
library(lattice)
p <- dotplot(VADeaths,xlim=c(8,85),type="o")
},
{
vad <- as.data.frame.table(VADeaths)
names(vad) <- c("age","demographic","deaths")
library(ggplot2)
p <- qplot(deaths,age,data=vad,group=demographic,geom="line",colour=demographic)+
  xlim(8,80)
})){
  print(direct.label(p,"angled.endpoints"))
  print(direct.label(p,"top.qp"))
}

### lineplot Positioning Methods
for(p in list({
data(BodyWeight,package="nlme")
library(lattice)
p <- xyplot(weight~Time|Diet,BodyWeight,groups=Rat,type='l',
       layout=c(3,1),xlim=c(-10,75))
},
{
data(Chem97,package="mlmRev")
library(lattice)
p <- qqmath(~gcsescore|gender,Chem97,groups=factor(score),
       type=c('l','g'),f.value=ppoints(100))
},
{
data(Chem97,package="mlmRev")
library(lattice)
p <- qqmath(~gcsescore,Chem97,groups=gender,
       type=c("l","g"),f.value=ppoints(100))
},
{
data(prostate,package="ElemStatLearn")
pros <- subset(prostate,select=-train,train==TRUE)
ycol <- which(names(pros)=="lpsa")
x <- as.matrix(pros[-ycol])
y <- pros[[ycol]]
library(lars)
fit <- lars(x,y,type="lasso")
beta <- scale(coef(fit),FALSE,1/fit$normx)
arclength <- rowSums(abs(beta))
library(reshape2)
path <- data.frame(melt(beta),arclength)
names(path)[1:3] <- c("step","variable","standardized.coef")
library(ggplot2)
p <- ggplot(path,aes(arclength,standardized.coef,colour=variable))+
  geom_line(aes(group=variable))+
  ggtitle("LASSO path for prostate cancer data calculated using the LARS")+
  xlim(0,20)
},
{
data(projectionSeconds, package="directlabels")
p <- ggplot(projectionSeconds, aes(vector.length/1e6))+
  geom_ribbon(aes(ymin=min, ymax=max,
                  fill=method, group=method), alpha=1/2)+
  geom_line(aes(y=mean, group=method, colour=method))+
  ggtitle("Projection Time against Vector Length (Sparsity = 10
  guides(fill="none")+
  ylab("Runtime (s)")
},
{
## complicated ridge regression lineplot ex. fig 3.8 from Elements of
## Statistical Learning, Hastie et al.
myridge <- function(f,data,lambda=c(exp(-seq(-15,15,l=200)),0)){
  require(MASS)
  require(reshape2)
  fit <- lm.ridge(f,data,lambda=lambda)
  X <- data[-which(names(data)==as.character(f[[2]]))]
  Xs <- svd(scale(X)) ## my d's should come from the scaled matrix
  dsq <- Xs$d^2
  ## make the x axis degrees of freedom
  df <- sapply(lambda,function(l)sum(dsq/(dsq+l)))
  D <- data.frame(t(fit$coef),lambda,df) # scaled coefs
  molt <- melt(D,id=c("lambda","df"))
  ## add in the points for df=0
  limpts <- transform(subset(molt,lambda==0),lambda=Inf,df=0,value=0)
  rbind(limpts,molt)
}
data(prostate,package="ElemStatLearn")
pros <- subset(prostate,train==TRUE,select=-train)
m <- myridge(lpsa~.,pros)
library(lattice)
p <- xyplot(value~df,m,groups=variable,type="o",pch="+",
       panel=function(...){
         panel.xyplot(...)
         panel.abline(h=0)
         panel.abline(v=5,col="grey")
       },
       xlim=c(-1,9),
       main="Ridge regression shrinks least squares coefficients",
       ylab="scaled coefficients",
       sub="grey line shows coefficients chosen by cross-validation",
       xlab=expression(df(lambda)))
},
{
library(ggplot2)
tx <- time(mdeaths)
Time <- ISOdate(floor(tx),round(tx
uk.lung <- rbind(data.frame(Time,sex="male",deaths=as.integer(mdeaths)),
                 data.frame(Time,sex="female",deaths=as.integer(fdeaths)))
p <- qplot(Time,deaths,data=uk.lung,colour=sex,geom="line")+
  xlim(ISOdate(1973,9,1),ISOdate(1980,4,1))
})){
  print(direct.label(p,"angled.boxes"))
  print(direct.label(p,"first.bumpup"))
  print(direct.label(p,"first.points"))
  print(direct.label(p,"first.polygons"))
  print(direct.label(p,"first.qp"))
  print(direct.label(p,"lasso.labels"))
  print(direct.label(p,"last.bumpup"))
  print(direct.label(p,"last.points"))
  print(direct.label(p,"last.polygons"))
  print(direct.label(p,"last.qp"))
  print(direct.label(p,"lines2"))
  print(direct.label(p,"maxvar.points"))
  print(direct.label(p,"maxvar.qp"))
}

### scatterplot Positioning Methods
for(p in list({
data(mpg,package="ggplot2")
m <- lm(cty~displ,data=mpg)
mpgf <- fortify(m,mpg)
library(lattice)
library(latticeExtra)
p <- xyplot(cty~hwy|manufacturer,mpgf,groups=class,aspect="iso",
       main="City and highway fuel efficiency by car class and manufacturer")+
  layer_(panel.abline(0,1,col="grey90"))
},
{
data(mpg,package="ggplot2")
m <- lm(cty~displ,data=mpg)
mpgf <- fortify(m,mpg)
library(lattice)
p <- xyplot(jitter(.resid)~jitter(.fitted),mpgf,groups=factor(cyl))
},
{
library(lattice)
p <- xyplot(jitter(Sepal.Length)~jitter(Petal.Length),iris,groups=Species)
},
{
data(mpg,package="ggplot2")
library(lattice)
p <- xyplot(jitter(cty)~jitter(hwy),mpg,groups=class,
       main="Fuel efficiency depends on car size")
},
{
library(ggplot2)
data(mpg,package="ggplot2")
p <- qplot(jitter(hwy),jitter(cty),data=mpg,colour=class,
      main="Fuel efficiency depends on car size")
},
{
data(normal.l2.cluster,package="directlabels")
library(ggplot2)
p <- ggplot(normal.l2.cluster$path,aes(x,y))+
  geom_path(aes(group=row),colour="grey")+
  geom_point(aes(size=lambda),colour="grey")+
  geom_point(aes(colour=class),data=normal.l2.cluster$pts,pch=21,fill="white")+
  coord_equal()
})){
  print(direct.label(p,"ahull.grid"))
  print(direct.label(p,"chull.grid"))
  print(direct.label(p,"extreme.grid"))
  print(direct.label(p,"smart.grid"))
}


## End(Not run)

directlabels documentation built on May 31, 2017, 4:42 a.m.