Description Usage Arguments Value Author(s) Examples
Inverse-distance weighted predictions for presence/absence data. Computed with the gstat function from the gstat package.
1 |
p |
Presence points. Two column matrix, data.frame, or a SpatialPoints* object |
a |
Absence points. Must be of the same class as p |
... |
Addtional arguments. None implemented |
An object of class InvDistWeightModel (inherits from DistModel-class
)
Robert J. Hijmans
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | r <- raster(system.file("external/rlogo.grd", package="raster"))
# presence points
p <- matrix(c(17, 42, 85, 70, 19, 53, 26, 84, 84, 46, 48, 85, 4, 95, 48, 54, 66, 74, 50, 48,
28, 73, 38, 56, 43, 29, 63, 22, 46, 45, 7, 60, 46, 34, 14, 51, 70, 31, 39, 26), ncol=2)
# absence points
a <- matrix(c(30, 23, 5, 5, 31, 33, 91, 63, 60, 88, 93, 97, 65, 68, 85, 97, 35, 32, 29, 55,
3, 8, 19, 71, 49, 36, 69, 41, 20, 28, 18, 9, 5, 9, 25, 71, 8, 32, 46, 60), ncol=2)
idw <- geoIDW(p, a)
prd <- predict(r, idw)
## Not run:
plot(prd)
points(p)
points(a, pch='x')
## End(Not run)
|
Loading required package: raster
Loading required package: sp
Loading required namespace: gstat
[inverse distance weighted interpolation]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.