Description Usage Arguments Value Author(s) References See Also Examples
Cross-validation of models with presence/absence data. Given a vector of presence and a vector of absence values (or a model and presence and absence points and predictors), confusion matrices are computed (for varying thresholds), and model evaluation statistics are computed for each confusion matrix / threshold. See the description of class ModelEvaluation-class
for more info.
1 |
p |
presence points (x and y coordinates or SpatialPoints* object). Or, if Or, a matrix with values to compute predictions for |
a |
absence points (x and y coordinates or SpatialPoints* object). Or, if Or, a matrix with values to compute predictions for |
model |
any fitted model, including objects inherting from 'DistModel'; not used when |
x |
Optional. Predictor variables (object of class Raster*). If present, |
tr |
Optional. a vector of threshold values to use for computing the confusion matrices |
... |
Additional arguments for the predict function |
An object of ModelEvaluation-class
Robert J. Hijmans
Fielding, A.H. and J.F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24:38-49
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | ## See ?maxent for an example with real data.
# this is a contrived example:
# p has the predicted values for 50 known cases (locations)
# with presence of the phenomenon (species)
p <- rnorm(50, mean=0.7, sd=0.3)
# b has the predicted values for 50 background locations (or absence)
a <- rnorm(50, mean=0.4, sd=0.4)
e <- evaluate(p=p, a=a)
threshold(e)
plot(e, 'ROC')
plot(e, 'TPR')
boxplot(e)
density(e)
str(e)
|
Loading required package: raster
Loading required package: sp
kappa spec_sens no_omission prevalence equal_sens_spec
thresholds 0.3500907 0.3500907 0.02986721 0.4975804 0.5715727
sensitivity
thresholds 0.361494
Formal class 'ModelEvaluation' [package "dismo"] with 22 slots
..@ presence : num [1:50] 0.429 0.943 0.744 0.934 0.448 ...
..@ absence : num [1:50] 1.214 0.656 0.704 0.419 0.346 ...
..@ np : int 50
..@ na : int 50
..@ auc : num 0.691
..@ pauc : num(0)
..@ cor : Named num 0.34
.. ..- attr(*, "names")= chr "cor"
..@ pcor : num 0.000549
..@ t : num [1:102] -0.601 -0.438 -0.23 -0.155 -0.074 ...
..@ confusion : int [1:102, 1:4] 50 50 50 50 50 50 50 50 50 49 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:4] "tp" "fp" "fn" "tn"
..@ prevalence: num [1:102] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
..@ ODP : num [1:102] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
..@ CCR : num [1:102] 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.57 ...
..@ TPR : num [1:102] 1 1 1 1 1 1 1 1 1 0.98 ...
..@ TNR : num [1:102] 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.16 ...
..@ FPR : num [1:102] 1 0.98 0.96 0.94 0.92 0.9 0.88 0.86 0.84 0.84 ...
..@ FNR : num [1:102] 0 0 0 0 0 0 0 0 0 0.02 ...
..@ PPP : num [1:102] 0.5 0.505 0.51 0.515 0.521 ...
..@ NPP : num [1:102] NaN 1 1 1 1 ...
..@ MCR : num [1:102] 0.5 0.49 0.48 0.47 0.46 0.45 0.44 0.43 0.42 0.43 ...
..@ OR : num [1:102] NaN Inf Inf Inf Inf ...
..@ kappa : num [1:102] 0 0.02 0.04 0.06 0.08 ...
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.