Nothing
# Author: Robert J. Hijmans, r.hijmans@gmail.com
# Date: December 2009
# Version 0.1
# Licence GPL v3
setClass('DistModel',
contains = 'VIRTUAL',
representation (
presence = 'data.frame',
absence = 'data.frame',
hasabsence = 'logical'
),
prototype (
presence = data.frame(),
absence = data.frame(),
hasabsence = FALSE
),
validity = function(object) {
if (object@hasabsence) {
t1 <- ncol(object@presence) == ncol(object@absence)
t2 <- sort(colnames(object@presence)) == sort(colnames(object@absence))
return(t1 & t2)
} else {
return(TRUE)
}
}
)
setMethod ('show' , 'DistModel',
function(object) {
cat('class :' , class(object), '\n\n')
cat('variables:', colnames(object@presence), '\n\n')
pp <- nrow(object@presence)
cat('\npresence points:', pp, '\n')
if (pp < 10) {
print(object@presence)
} else {
print(object@presence[1:10,])
cat(' (... ... ...)\n\n')
}
if (object@hasabsence) {
pp <- nrow(object@absence)
cat('\nabsence points:', pp, '\n')
if (pp < 10) {
print(object@absence)
} else {
print(object@absence[1:10,])
cat(' (... ... ...)\n\n')
}
}
}
)
setClass('ModelEvaluation',
representation (
presence = 'vector',
absence = 'vector',
np = 'integer',
na = 'integer',
auc = 'numeric',
pauc = 'numeric',
cor = 'numeric',
pcor = 'numeric',
t = 'vector',
confusion = 'matrix',
prevalence = 'vector',
ODP = 'vector', # overall diagnostic power
CCR = 'vector', # correct classification rate
TPR = 'vector', # sensitivity, or true positive rate
TNR = 'vector', # specificity, or true negative rate
FPR ='vector', # False positive rate
FNR ='vector', # False negative rate
PPP = 'vector',
NPP = 'vector',
MCR = 'vector', # misclassification rate
OR = 'vector', # odds ratio
kappa = 'vector'
),
prototype (
np = as.integer(0),
na = as.integer(0)
),
validity = function(object) {
return(TRUE)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.