R/LatticeTransitionProbs.R

Defines functions LatticeTransitionProbs

Documented in LatticeTransitionProbs

## Function to calculate cell-to-cell transition probabilities
#
#	x1				-	Lower x-coordinates of lattice cells
#	x2				-	Upper x-coordinates of lattice cells
#	y1				-	Lower y-coordinates of lattice cells
#	y2				-	Upper y-coordinates of lattice cells
#	func				-	Dispersal function can be a character vector with the following values
#							"gaussian" : Gaussian dispersal function
#	approx.method			-	Approximation method to use
#							"CC" : Centroid-to-centroid dispersal
#							"CA" : Centroid-to-area dispersal
#							"AC" : Area-to-centroid dispersal
#							"AA" : Area-to-area dispersal
#	max.prob			-	Stopping condition for the calculation of infinite series
#	initial.step			-	MC integration parameter - number of runs to do in the first step
#	step.size			-	MC integration parameter - number of runs to do in one time step
#	max.rel.var			-	MC integration parameter - maximum relative variance before stopping MC integration
#	max.runs			-	MC integration parameter - maximum number of runs before stopping MC integration
#	params				-	Parameter vector used in dispersal calculation
#	...				-	Extra parameters to pass to the dispersal function
#
LatticeTransitionProbs <- function(x1, x2, y1, y2, func, approx.method = "AA", boundary = "absorbing", max.prob = .Machine$double.eps^0.25,
	initial.step = 10000, step.size = 10000, max.rel.var = .Machine$double.eps^0.25, max.runs = 1000000, params = NULL, ...)
{
	out <- NULL
	# Check to see if function input is a character vector
	if(is.character(func))
	{
		if(tolower(func[1]) == "gaussian")
		{
			# Function is Gaussian - call relevant C++ function
			out <- t(.External("GaussianLatticeTransition",
				x1 = as.double(x1),
				x2 = as.double(x2),
				y1 = as.double(y1),
				y2 = as.double(y2),
				alpha = as.double(params)[1],
				approx.method = toupper(as.character(approx.method)[1]),
				boundary = tolower(as.character(boundary)[1]),
				max.prob = as.double(max.prob)[1],
				PACKAGE = "ecomodtools"))
		}
		else
		{
			stop("unsupported function name")
		}
	}
	# ... otherwise resort to Monte Carlo integration
	else
	{
		# Function wrapper for centroid-to-centroid dispersal
		CCDisp <- function(from.x1, from.x2, from.y1, from.y2,
			to.x1, to.x2, to.y1, to.y2,
			func.in, params, initial.step, step.size, max.rel.var, max.runs, ...)
		{
			func.in(
				from = c((from.x1 + from.x2) / 2.0, (from.y1 + from.y2) / 2.0),
				to = c((to.x1 + to.x2) / 2.0, (to.y1 + to.y2) / 2.0),
				params = params, ...)
		}
		# Function wrapper for centroid-to-area dispersal
		CADisp <- function(from.x1, from.x2, from.y1, from.y2,
			to.x1, to.x2, to.y1, to.y2,
			func.in, params, initial.step, step.size, max.rel.var, max.runs, ...)
		{
			# Wrapper function for centroid-to-area integration
			CAWrap <- function(x, params, from, ...)
			{
				func.in(
					from = from,
					to = c(x[1], x[2]),
					params = params, ...)
			}
			# Perform the Monte Carlo integration
			MCIntegration(func = CAWrap, lower = c(to.x1, to.y1), upper = c(to.x2, to.y2),
				initial.step = initial.step, step.size = step.size, max.rel.var = max.rel.var, max.runs = max.runs,
				params = params, from = c((from.x1 + from.x2) / 2.0, (from.y1 + from.y2) / 2.0), ...)$val

		}
		# Function wrapper for area-to-centroid dispersal
		ACDisp <- function(from.x1, from.x2, from.y1, from.y2,
			to.x1, to.x2, to.y1, to.y2,
			func.in, params, initial.step, step.size, max.rel.var, max.runs, ...)
		{
			# Wrapper function for area-to-centroid integration
			ACWrap <- function(x, params, to, ...)
			{
				func.in(
					from = c(x[1], x[2]),
					to = to,
					params = params, ...)
			}
			# Perform the Monte Carlo integration
			MCIntegration(func = ACWrap, lower = c(from.x1, from.y1), upper = c(from.x2, from.y2),
				initial.step = initial.step, step.size = step.size, max.rel.var = max.rel.var, max.runs = max.runs,
				params = params, to = c((to.x1 + to.x2) / 2.0, (to.y1 + to.y2) / 2.0), ...)$val
		}
		# Function wrapper for area-to-area dispersal
		AADisp <- function(from.x1, from.x2, from.y1, from.y2,
			to.x1, to.x2, to.y1, to.y2,
			func.in, params, initial.step, step.size, max.rel.var, max.runs, ...)
		{
			# Wrapper function for area-to-area integration
			AAWrap <- function(x, params, ...)
			{
				func.in(
					from = c(x[1], x[2]),
					to = c(x[3], x[4]),
					params = params, ...)
			}
			# Perform the Monte Carlo integration
			MCIntegration(func = AAWrap, lower = c(from.x1, from.y1, to.x1, to.y1), upper = c(from.x2, from.y2, to.x2, to.y2),
				initial.step = initial.step, step.size = step.size, max.rel.var = max.rel.var, max.runs = max.runs,
				params = params, ...)$val
		}
		# List of dispersal functions
		disp.funcs <- list(CC = CCDisp, CA = CADisp, AC = ACDisp, AA = AADisp)
		# Calculate the cell-to-cell transition probabilities using Monte Carlo simulation
		out <- t(.External("LatticeTransition",
			x1 = as.double(x1),
			x2 = as.double(x2),
			y1 = as.double(y1),
			y2 = as.double(y2),
			func = as.function(func),
			approx.method = toupper(as.character(approx.method)[1]),
			boundary = tolower(as.character(boundary)[1]),
			max.prob = as.double(max.prob)[1],
			initial.step = as.integer(initial.step)[1],
			step.size = as.integer(step.size)[1],
			max.rel.var = as.double(max.rel.var)[1],
			max.runs = as.integer(max.runs)[1],
			params = params,
			disp.funcs = disp.funcs,
			PACKAGE = "ecomodtools", ...))
	}
	out
}

Try the ecomodtools package in your browser

Any scripts or data that you put into this service are public.

ecomodtools documentation built on May 31, 2017, 2:44 a.m.