Description Usage Arguments Details Value See Also Examples
Obtain the coefficients component from a functional object (functional
data, class fd
, functional parameter, class fdPar
, a
functional smooth, class fdSmooth
, or a Taylor spline
representation, class Taylor
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## S3 method for class 'fd'
coef(object, ...)
## S3 method for class 'fdPar'
coef(object, ...)
## S3 method for class 'fdSmooth'
coef(object, ...)
## S3 method for class 'Taylor'
coef(object, ...)
## S3 method for class 'fd'
coefficients(object, ...)
## S3 method for class 'fdPar'
coefficients(object, ...)
## S3 method for class 'fdSmooth'
coefficients(object, ...)
## S3 method for class 'Taylor'
coefficients(object, ...)
|
object |
An object whose functional coefficients are desired |
... |
other arguments |
Functional representations are evaluated by multiplying a basis
function matrix times a coefficient vector, matrix or 3-dimensional
array. (The basis function matrix contains the basis functions as
columns evaluated at the evalarg
values as rows.)
A numeric vector or array of the coefficients.
coef
fd
fdPar
smooth.basisPar
smooth.basis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | ##
## coef.fd
##
bspl1.1 <- create.bspline.basis(norder=1, breaks=0:1)
fd.bspl1.1 <- fd(0, basisobj=bspl1.1)
coef(fd.bspl1.1)
##
## coef.fdPar
##
rangeval <- c(-3,3)
# set up some standard normal data
x <- rnorm(50)
# make sure values within the range
x[x < -3] <- -2.99
x[x > 3] <- 2.99
# set up basis for W(x)
basisobj <- create.bspline.basis(rangeval, 11)
# set up initial value for Wfdobj
Wfd0 <- fd(matrix(0,11,1), basisobj)
WfdParobj <- fdPar(Wfd0)
coef(WfdParobj)
##
## coef.fdSmooth
##
girlGrowthSm <- with(growth, smooth.basisPar(argvals=age, y=hgtf,
lambda=0.1)$fd)
coef(girlGrowthSm)
##
## coef.Taylor
##
# coming soon.
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.