Description Usage Arguments Details Value Author(s) References See Also Examples
The function WA1() defines the Waring distribution, a two parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with parameters mu and sigma. The functions dWA1, pWA1, qWA1 and rWA1 define the density, distribution function, quantile function and random generation for the WA1 parameterization of the Waring distribution.
1 2 3 4 5 |
mu.link |
Defines the |
sigma.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
max.value |
constant; generates a sequence of values for the cdf function |
The parameterization of the Pareto Type 2 distribution in the function WA1 is
f(y|mu, sigma) = Beta(sigma+y, mu+1)/Beta(sigma, mu)
for y>=0, mu>0 and sigma>0.
returns a gamlss.family object which can be used to fit a Waring distribution in the gamlss() function.
Bob Rigby r.rigby@londonmet.ac.uk, Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Fiona McElduff F.Mcelduff@londonmet.ac.uk and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
1 2 3 4 5 6 7 8 9 10 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.