Description Usage Arguments Details Value Note Author(s) References See Also Examples
The function YU2() defines the Yule distribution, a one parameter distribution, for a gamlss.family object to be used in GAMLSS fitting using the function gamlss(), with mean equal to the parameter mu. The functions dYU2, pYU2, qYU2 and rYU2 define the density, distribution function, quantile function and random generation for the YU2 parameterization of the Yule distribution.
1 2 3 4 5 |
mu.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
max.value |
constant; generates a sequence of values for the cdf function |
The parameterization of the Yule distribution in the function YU2 is
f(y|lambda) = Beta(lambda+1, y+1)/Beta(lambda, 1)
where lamda = 1/mu + 1 for y>=0 and mu>0.
returns a gamlss.family object which can be used to fit a Yule distribution in the gamlss() function.
For the function YU1(), mu is the mean of the Yule distribution.
Bob Rigby r.rigby@londonmet.ac.uk, Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Fiona McElduff F.Mcelduff@londonmet.ac.uk and Kalliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Stasinopoulos D. M., Rigby R.A. and Akantziliotou C. (2006) Instructions on how to use the GAMLSS package in R. Accompanying documentation in the current GAMLSS help files, (see also http://www.gamlss.com/).
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, http://www.jstatsoft.org/v23/i07.
1 2 3 4 5 6 7 8 9 10 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.