Description Usage Arguments Details Value Author(s) References See Also Examples
The function fit.variogram.model fits a variogram model to a sample
variogram by weighted non-linear least squares. There are print,
summary and
lines methods for summarizing and displaying fitted variogram
models.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | fit.variogram.model(sv,
variogram.model = c( "RMexp", "RMbessel", "RMcauchy",
"RMcircular", "RMcubic", "RMdagum", "RMdampedcos", "RMdewijsian", "RMfbm",
"RMgauss", "RMgenfbm", "RMgencauchy", "RMgengneiting", "RMgneiting", "RMlgd",
"RMmatern", "RMpenta", "RMaskey", "RMqexp", "RMspheric", "RMstable",
"RMwave", "RMwhittle"
),
param,
fit.param = c( variance = TRUE, snugget = FALSE, nugget = TRUE, scale = TRUE,
alpha = FALSE, beta = FALSE, delta = FALSE,
gamma = FALSE, kappa = FALSE, lambda = FALSE, mu = FALSE, nu = FALSE
)[names(param)],
aniso = c(f1 = 1, f2 = 1, omega = 90, phi = 90, zeta = 0),
fit.aniso = c(f1 = FALSE, f2 = FALSE, omega = FALSE,
phi = FALSE, zeta = FALSE),
max.lag = max(sv[["lag.dist"]]), min.npairs = 30,
weighting.method = c("cressie", "equal", "npairs"), hessian = TRUE,
verbose = 0, ...)
## S3 method for class 'fitted.variogram'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'fitted.variogram'
summary(object, correlation = FALSE, signif = 0.95, ...)
## S3 method for class 'fitted.variogram'
lines(x, what = c("variogram", "covariance", "correlation"),
from = 1.e-6, to, n = 501, xy.angle = 90, xz.angle = 90,
col = 1:length(xy.angle), pch = 1:length(xz.angle), lty = "solid", ...)
|
sv |
an object of class |
variogram.model |
a character keyword defining the variogram model to
be fitted. Currently, most basic variogram models provided by the
package RandomFields can be fitted (see Details of
|
param |
a named numeric vector with initial values of the variogram
parameters. The following parameter names are allowed (see
Details of
|
fit.param |
a named logical vector with the same names as used for
|
aniso |
a named numeric vector with initial values for fitting
geometrically anisotropic variogram models. The following parameter names are allowed
(see Details of
|
fit.aniso |
a named logical vector with the same names as used for
|
max.lag |
a positive numeric defining the maximum lag distance to be used for fitting or plotting variogram models (default all lag classes). |
min.npairs |
a positive integer defining the minimum number of data
pairs required so that a lag class is used for fitting a variogram
model (default |
weighting.method |
a character keyword defining the weights for non-linear least squares. Possible values are:
|
hessian |
logical controlling whether the hessian is computed by
|
verbose |
positive integer controlling logging of diagnostic messages to the console during model fitting. |
object, x |
an object of class |
digits |
positive integer indicating the number of decimal digits to print. |
correlation |
logical controlling whether the correlation matrix of
the fitted variogram parameters is computed (default |
signif |
confidence level for computing confidence intervals for
variogram parameters (default |
what |
the quantity that should be displayed (default |
from |
numeric, minimal lag distance used in plotting variogram models. |
to |
numeric, maximum lag distance used in plotting variogram models (default: largest lag distance of current plot). |
n |
positive integer specifying the number of equally spaced lag
distances for which semivariances are evaluated in plotting variogram
models (default |
xy.angle |
numeric (vector) with azimuth angles (in degrees, clockwise positive from north) in x-y-plane for which semivariances should be plotted. |
xz.angle |
numeric (vector) with angles in x-z-plane (in degrees, clockwise positive from zenith to south) for which semivariances should be plotted. |
col |
color of curves to distinguish curves relating to different azimuth angles in x-y-plane. |
pch |
type of plotting symbols added to lines to distinguish curves relating to different angles in x-z-plane. |
lty |
line type for plotting variogram models. |
... |
additional arguments passed to |
The parametrization of geometrically anisotropic variograms is
described in detail in georobIntro, and the section
Details of georob describes how the parameter
estimates are constrained to permissible ranges. The same
mechanisms are used in fit.variogram.model.
The function fit.variogram.model generates an object of class
fitted.variogram which is a list with the following components:
sse |
the value of the object function (weighted residual sum of squares) evaluated at the solution. |
variogram.model |
the name of the fitted parametric variogram model. |
param |
a named vector with the (estimated) variogram parameters of the fitted model. |
aniso |
a list with the following components:
|
param.tf |
a character vector listing the transformations of the variogram parameters used for model fitting. |
fwd.tf |
a list of functions for variogram parameter transformations. |
bwd.tf |
a list of functions for inverse variogram parameter transformations. |
converged |
logical indicating whether numerical maximization by
|
convergence.code |
a diagnostic integer issued by
|
call |
the matched call. |
residuals |
a numeric vector with the residuals, that is the sample semivariance minus the fitted values. |
fitted |
a numeric vector with the modelled semivariances. |
weights |
a numeric vector with the weights used for fitting. |
hessian |
a symmetric matrix giving an estimate of the Hessian at
the solution (missing if |
Andreas Papritz andreas.papritz@env.ethz.ch.
Cressie, N. A. C. (1993) Statistics for Spatial Data. New York: John Wiley & Sons.
georobIntro for a description of the model and a brief summary of the algorithms;
georob for (robust) fitting of spatial linear models;
sample.variogram for computing sample variograms.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 | data(wolfcamp, package = "geoR")
## fitting an isotropic IRF(0) model
r.sv.iso <- sample.variogram(wolfcamp[["data"]], locations = wolfcamp[[1]],
lag.class.def = seq(0, 200, by = 15))
r.irf0.iso <- fit.variogram.model(r.sv.iso, variogram.model = "RMfbm",
param = c(variance = 100, nugget = 1000, scale = 1., alpha = 1.),
fit.param = c( variance = TRUE, nugget = TRUE, scale = FALSE, alpha = TRUE),
method = "Nelder-Mead", hessian = FALSE, control = list(maxit = 5000))
summary(r.irf0.iso, correlation = TRUE)
## Not run:
plot( r.sv.iso, type = "l")
lines( r.irf0.iso, line.col = "red")
## End(Not run)
## fitting an anisotropic IRF(0) model
r.sv.aniso <- sample.variogram(wolfcamp[["data"]],
locations = wolfcamp[[1]], lag.class.def = seq(0, 200, by = 15),
xy.angle.def = c(0., 22.5, 67.5, 112.5, 157.5, 180.))
## Not run:
plot(r.sv.aniso, type = "l")
## End(Not run)
r.irf0.aniso <- fit.variogram.model(r.sv.aniso, variogram.model = "RMfbm",
param = c(variance = 100, nugget = 1000, scale = 1., alpha = 1.5),
fit.param = c(variance = TRUE, nugget = TRUE, scale = FALSE, alpha = TRUE),
aniso = c(f1 = 0.4, f2 = 1., omega = 135, phi = 90., zeta = 0.),
fit.aniso = c(f1 = TRUE, f2 = FALSE, omega = TRUE, phi = FALSE, zeta = FALSE),
method = "Nelder-Mead", hessian = TRUE, control = list(maxit = 5000))
summary(r.irf0.aniso, correlation = TRUE)
## Not run:
lines(r.irf0.aniso, xy.angle = seq( 0, 135, by = 45))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.