Description Usage Arguments Details Author(s) See Also Examples
This page documents the tuning parameters for georob. It
describes the arguments of the functions control.georob,
param.transf, fwd.transf, dfwd.transf,
bwd.transf, rq.control, nleqslv.control and
optim.control, which all serve to control the behaviour of
georob.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | georob.control(initial.method = c("lmrob", "rq", "lm"), bhat = NULL,
param.tf = param.transf(),fwd.tf = fwd.transf(),
deriv.fwd.tf = dfwd.transf(), bwd.tf = bwd.transf(),
safe.param = 1.e12, psi.func = c("logistic", "t.dist", "huber"),
tuning.psi.nr = 1000, min.rweight = 0.25,
irwls.initial = TRUE, irwls.maxiter = 50,
irwls.reltol = sqrt(.Machine[["double.eps"]]),
force.gradient = FALSE, zero.dist = sqrt(.Machine[["double.eps"]]),
cov.bhat = FALSE, full.cov.bhat = FALSE, cov.betahat = TRUE,
cov.bhat.betahat = FALSE,
cov.delta.bhat = TRUE, full.cov.delta.bhat = TRUE,
cov.delta.bhat.betahat = TRUE,
cov.ehat = TRUE, full.cov.ehat = FALSE,
cov.ehat.p.bhat = FALSE, full.cov.ehat.p.bhat = FALSE,
aux.cov.pred.target = FALSE, min.condnum = 1.e-12,
rq = rq.control(), lmrob = lmrob.control(),
nleqslv = nleqslv.control(),
optim = optim.control(), full.output = TRUE)
param.transf( variance = "log", snugget = "log", nugget = "log", scale = "log",
alpha = "identity", beta = "log", delta = "identity",
gamma = "identity", kappa = "identity", lambda = "identity",
mu = "log", nu = "log",
f1 = "log", f2 ="log", omega = "rad", phi = "rad", zeta = "rad"
)
fwd.transf(...)
dfwd.transf(...)
bwd.transf(...)
rq.control(tau = 0.5, rq.method = "br", rq.alpha = 0.1, ci = FALSE, iid = TRUE,
interp = TRUE, tcrit = TRUE, rq.beta = 0.99995, eps = 1e-06,
Mm.factor = 0.8, max.bad.fixup = 3)
nleqslv.control(nleqslv.method = c("Broyden", "Newton"),
global = c( "dbldog", "pwldog", "qline", "gline", "none" ),
xscalm = c( "fixed", "auto" ), nleqslv.control = NULL)
optim.control(optim.method = c("BFGS", "Nelder-Mead", "CG",
"L-BFGS-B", "SANN", "Brent"), lower = -Inf, upper = Inf,
optim.control = NULL, hessian = TRUE)
|
initial.method |
character keyword defining whether the function
|
bhat |
initial values for the spatial random effects
hatB, with
hatB=0
if |
param.tf |
a function such as |
fwd.tf |
a function such as |
deriv.fwd.tf |
a function such as |
bwd.tf |
a function such as |
safe.param |
maximum acceptable value for any variogram parameter.
If trial parameter values generated by |
psi.func |
character keyword defining what ψ_c-function should be
used for robust model fitting. Possible values are |
tuning.psi.nr |
positive numeric. If |
min.rweight |
positive numeric. “Robustness weight” of
the initial |
irwls.initial |
logical. If |
irwls.maxiter |
positive integer equal to the maximum number of
IRWLS iterations to solve the estimating equations of
B and
β (default |
irwls.reltol |
numeric convergence criterion for IRWLS.
Convergence is assumed if |
force.gradient |
logical controlling whether the estimating
equations or the gradient of the Gaussian restricted loglikelihood are
evaluated even if all variogram parameters are fixed (default
|
zero.dist |
positive numeric equal to the maximum distance, separating two sampling locations that are still considered as being coincident. |
cov.bhat |
logical controlling whether the covariances of
hatB are returned by
|
full.cov.bhat |
logical controlling whether the full covariance
matrix ( |
cov.betahat |
logical controlling whether the covariance matrix of
hatβ is returned
(default |
cov.bhat.betahat |
logical controlling whether the covariance matrix
of hatB and
hatβ is returned
(default |
cov.delta.bhat |
logical controlling whether the covariances of
B-hatB are returned (default |
full.cov.delta.bhat |
logical controlling whether the full covariance
matrix ( |
cov.delta.bhat.betahat |
logical controlling whether the covariance
matrix of B-hatB and
hatβ is returned
(default |
cov.ehat |
logical controlling whether the covariances of
hatε=Y-X hatβ -
hatB are returned (default |
full.cov.ehat |
logical controlling whether the full covariance
matrix ( |
cov.ehat.p.bhat |
logical controlling whether the covariances of
hatε+ hatB=Y-X
hatβ are returned (default |
full.cov.ehat.p.bhat |
logical controlling whether the full
covariance matrix ( |
aux.cov.pred.target |
logical controlling whether a covariance term
required for the back-transformation of kriging predictions of
log-transformed data is returned (default |
min.condnum |
positive numeric. Minimum acceptable ratio of smallest to
largest singular value of the model matrix
X (default |
rq |
a list of arguments passed to |
lmrob |
a list of arguments passed to the |
nleqslv |
a list of arguments passed to
|
optim |
a list of arguments passed to |
full.output |
logical controlling how much output is returned in
|
.
... |
named vectors of functions, extending the definition of transformations for variogram parameters (see Details). |
variance, snugget, nugget, scale, alpha, beta, delta, gamma, kappa, lambda, mu, nu |
character strings with names of transformation functions of the variogram parameters. |
f1, f2, omega, phi, zeta |
character strings with names of transformation functions of the variogram parameters. |
tau, rq.method, rq.alpha, ci, iid, interp, tcrit |
arguments passed
as |
rq.beta, eps, Mm.factor, max.bad.fixup |
arguments passed as
|
nleqslv.method, global, xscalm, nleqslv.control |
arguments passed
to related arguments of |
optim.method, lower, upper, hessian, optim.control |
arguments
passed to related arguments of |
The arguments param.tf, fwd.tf, deriv.fwd.tf,
bwd.tf define the transformations of the variogram parameters for
robust REML estimation. Implemented are currently "log",
"rad" (conversion from degree to radian) and "identity" (= no)
transformations. These are the possible values that the many arguments
of the function param.transf accept (as quoted character strings)
and these are the names of the list components returned by
fwd.transf, dfwd.transf and bwd.transf. Additional
transformations can be implemented by:
Extending the function definitions by arguments like
fwd.tf = fwd.transf(c(my.fun = function(x) your transformation)),
deriv.fwd.tf = dfwd.transf(c(my.fun = function(x) your derivative)),
bwd.tf = bwd.transf(c(my.fun = function(x) your back-transformation)),
Assigning to a given argument of param.transf the name of
the new function, e.g.
variance = "my.fun".
Note the values given for the arguments of param.transf must match
the names of the functions returned by fwd.transf,
dfwd.transf and bwd.transf.
Andreas Papritz andreas.papritz@env.ethz.ch
georobIntro for a description of the model and a brief summary of the algorithms;
georob for (robust) fitting of spatial linear models;
georobObject for a description of the class georob;
plot.georob for display of REML variogram estimates;
predict.georob for computing robust kriging predictions; and finally
georobMethods for further methods for the class georob.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
data( meuse )
r.logzn.rob <- georob(log(zinc) ~ sqrt(dist), data = meuse, locations = ~ x + y,
variogram.model = "exponential",
param = c( variance = 0.15, nugget = 0.05, scale = 200 ),
tuning.psi = 1, initial.method = "rq",
control = georob.control(cov.bhat = TRUE, cov.ehat.p.bhat = TRUE), verbose = 2)
qqnorm(rstandard(r.logzn.rob, level = 0)); abline(0, 1)
qqnorm(ranef(r.logzn.rob, standard = TRUE)); abline(0, 1)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.