Description Usage Arguments Details Author(s) See Also Examples
This page documents the tuning parameters for georob
. It
describes the arguments of the functions control.georob
,
param.transf
, fwd.transf
, dfwd.transf
,
bwd.transf
, rq.control
, nleqslv.control
and
optim.control
, which all serve to control the behaviour of
georob
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | georob.control(initial.method = c("lmrob", "rq", "lm"), bhat = NULL,
param.tf = param.transf(),fwd.tf = fwd.transf(),
deriv.fwd.tf = dfwd.transf(), bwd.tf = bwd.transf(),
safe.param = 1.e12, psi.func = c("logistic", "t.dist", "huber"),
tuning.psi.nr = 1000, min.rweight = 0.25,
irwls.initial = TRUE, irwls.maxiter = 50,
irwls.reltol = sqrt(.Machine[["double.eps"]]),
force.gradient = FALSE, zero.dist = sqrt(.Machine[["double.eps"]]),
cov.bhat = FALSE, full.cov.bhat = FALSE, cov.betahat = TRUE,
cov.bhat.betahat = FALSE,
cov.delta.bhat = TRUE, full.cov.delta.bhat = TRUE,
cov.delta.bhat.betahat = TRUE,
cov.ehat = TRUE, full.cov.ehat = FALSE,
cov.ehat.p.bhat = FALSE, full.cov.ehat.p.bhat = FALSE,
aux.cov.pred.target = FALSE, min.condnum = 1.e-12,
rq = rq.control(), lmrob = lmrob.control(),
nleqslv = nleqslv.control(),
optim = optim.control(), full.output = TRUE)
param.transf( variance = "log", snugget = "log", nugget = "log", scale = "log",
alpha = "identity", beta = "log", delta = "identity",
gamma = "identity", kappa = "identity", lambda = "identity",
mu = "log", nu = "log",
f1 = "log", f2 ="log", omega = "rad", phi = "rad", zeta = "rad"
)
fwd.transf(...)
dfwd.transf(...)
bwd.transf(...)
rq.control(tau = 0.5, rq.method = "br", rq.alpha = 0.1, ci = FALSE, iid = TRUE,
interp = TRUE, tcrit = TRUE, rq.beta = 0.99995, eps = 1e-06,
Mm.factor = 0.8, max.bad.fixup = 3)
nleqslv.control(nleqslv.method = c("Broyden", "Newton"),
global = c( "dbldog", "pwldog", "qline", "gline", "none" ),
xscalm = c( "fixed", "auto" ), nleqslv.control = NULL)
optim.control(optim.method = c("BFGS", "Nelder-Mead", "CG",
"L-BFGS-B", "SANN", "Brent"), lower = -Inf, upper = Inf,
optim.control = NULL, hessian = TRUE)
|
initial.method |
character keyword defining whether the function
|
bhat |
initial values for the spatial random effects
hatB, with
hatB=0
if |
param.tf |
a function such as |
fwd.tf |
a function such as |
deriv.fwd.tf |
a function such as |
bwd.tf |
a function such as |
safe.param |
maximum acceptable value for any variogram parameter.
If trial parameter values generated by |
psi.func |
character keyword defining what ψ_c-function should be
used for robust model fitting. Possible values are |
tuning.psi.nr |
positive numeric. If |
min.rweight |
positive numeric. “Robustness weight” of
the initial |
irwls.initial |
logical. If |
irwls.maxiter |
positive integer equal to the maximum number of
IRWLS iterations to solve the estimating equations of
B and
β (default |
irwls.reltol |
numeric convergence criterion for IRWLS.
Convergence is assumed if |
force.gradient |
logical controlling whether the estimating
equations or the gradient of the Gaussian restricted loglikelihood are
evaluated even if all variogram parameters are fixed (default
|
zero.dist |
positive numeric equal to the maximum distance, separating two sampling locations that are still considered as being coincident. |
cov.bhat |
logical controlling whether the covariances of
hatB are returned by
|
full.cov.bhat |
logical controlling whether the full covariance
matrix ( |
cov.betahat |
logical controlling whether the covariance matrix of
hatβ is returned
(default |
cov.bhat.betahat |
logical controlling whether the covariance matrix
of hatB and
hatβ is returned
(default |
cov.delta.bhat |
logical controlling whether the covariances of
B-hatB are returned (default |
full.cov.delta.bhat |
logical controlling whether the full covariance
matrix ( |
cov.delta.bhat.betahat |
logical controlling whether the covariance
matrix of B-hatB and
hatβ is returned
(default |
cov.ehat |
logical controlling whether the covariances of
hatε=Y-X hatβ -
hatB are returned (default |
full.cov.ehat |
logical controlling whether the full covariance
matrix ( |
cov.ehat.p.bhat |
logical controlling whether the covariances of
hatε+ hatB=Y-X
hatβ are returned (default |
full.cov.ehat.p.bhat |
logical controlling whether the full
covariance matrix ( |
aux.cov.pred.target |
logical controlling whether a covariance term
required for the back-transformation of kriging predictions of
log-transformed data is returned (default |
min.condnum |
positive numeric. Minimum acceptable ratio of smallest to
largest singular value of the model matrix
X (default |
rq |
a list of arguments passed to |
lmrob |
a list of arguments passed to the |
nleqslv |
a list of arguments passed to
|
optim |
a list of arguments passed to |
full.output |
logical controlling how much output is returned in
|
.
... |
named vectors of functions, extending the definition of transformations for variogram parameters (see Details). |
variance, snugget, nugget, scale, alpha, beta, delta, gamma, kappa, lambda, mu, nu |
character strings with names of transformation functions of the variogram parameters. |
f1, f2, omega, phi, zeta |
character strings with names of transformation functions of the variogram parameters. |
tau, rq.method, rq.alpha, ci, iid, interp, tcrit |
arguments passed
as |
rq.beta, eps, Mm.factor, max.bad.fixup |
arguments passed as
|
nleqslv.method, global, xscalm, nleqslv.control |
arguments passed
to related arguments of |
optim.method, lower, upper, hessian, optim.control |
arguments
passed to related arguments of |
The arguments param.tf
, fwd.tf
, deriv.fwd.tf
,
bwd.tf
define the transformations of the variogram parameters for
robust REML estimation. Implemented are currently "log"
,
"rad"
(conversion from degree to radian) and "identity"
(= no)
transformations. These are the possible values that the many arguments
of the function param.transf
accept (as quoted character strings)
and these are the names of the list components returned by
fwd.transf
, dfwd.transf
and bwd.transf
. Additional
transformations can be implemented by:
Extending the function definitions by arguments like
fwd.tf = fwd.transf(c(my.fun = function(x) your transformation))
,
deriv.fwd.tf = dfwd.transf(c(my.fun = function(x) your derivative))
,
bwd.tf = bwd.transf(c(my.fun = function(x) your back-transformation))
,
Assigning to a given argument of param.transf
the name of
the new function, e.g.
variance = "my.fun"
.
Note the values given for the arguments of param.transf
must match
the names of the functions returned by fwd.transf
,
dfwd.transf
and bwd.transf
.
Andreas Papritz andreas.papritz@env.ethz.ch
georobIntro
for a description of the model and a brief summary of the algorithms;
georob
for (robust) fitting of spatial linear models;
georobObject
for a description of the class georob
;
plot.georob
for display of REML variogram estimates;
predict.georob
for computing robust kriging predictions; and finally
georobMethods
for further methods for the class georob
.
1 2 3 4 5 6 7 8 9 10 11 12 13 | ## Not run:
data( meuse )
r.logzn.rob <- georob(log(zinc) ~ sqrt(dist), data = meuse, locations = ~ x + y,
variogram.model = "exponential",
param = c( variance = 0.15, nugget = 0.05, scale = 200 ),
tuning.psi = 1, initial.method = "rq",
control = georob.control(cov.bhat = TRUE, cov.ehat.p.bhat = TRUE), verbose = 2)
qqnorm(rstandard(r.logzn.rob, level = 0)); abline(0, 1)
qqnorm(ranef(r.logzn.rob, standard = TRUE)); abline(0, 1)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.