georob.control: Tuning Parameters for georob

Description Usage Arguments Details Author(s) See Also Examples

Description

This page documents the tuning parameters for georob. It describes the arguments of the functions control.georob, param.transf, fwd.transf, dfwd.transf, bwd.transf, rq.control, nleqslv.control and optim.control, which all serve to control the behaviour of georob.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
georob.control(initial.method = c("lmrob", "rq", "lm"), bhat = NULL, 
    param.tf = param.transf(),fwd.tf = fwd.transf(), 
    deriv.fwd.tf = dfwd.transf(), bwd.tf = bwd.transf(), 
    safe.param = 1.e12, psi.func = c("logistic", "t.dist", "huber"),
    tuning.psi.nr = 1000, min.rweight = 0.25,
    irwls.initial = TRUE, irwls.maxiter = 50, 
    irwls.reltol = sqrt(.Machine[["double.eps"]]),
    force.gradient = FALSE, zero.dist = sqrt(.Machine[["double.eps"]]),
    cov.bhat = FALSE, full.cov.bhat = FALSE, cov.betahat = TRUE, 
    cov.bhat.betahat = FALSE, 
    cov.delta.bhat = TRUE, full.cov.delta.bhat = TRUE,
    cov.delta.bhat.betahat = TRUE,
    cov.ehat = TRUE, full.cov.ehat = FALSE,
    cov.ehat.p.bhat = FALSE, full.cov.ehat.p.bhat = FALSE,
    aux.cov.pred.target = FALSE, min.condnum = 1.e-12,
    rq = rq.control(), lmrob = lmrob.control(),
    nleqslv = nleqslv.control(), 

    optim = optim.control(), full.output = TRUE)
    
param.transf( variance = "log", snugget = "log", nugget = "log", scale = "log", 
    alpha = "identity", beta = "log", delta = "identity", 
    gamma = "identity", kappa = "identity", lambda = "identity", 
    mu = "log", nu = "log",
    f1 = "log", f2  ="log", omega = "rad", phi = "rad", zeta = "rad"
  )
  
fwd.transf(...)

dfwd.transf(...)

bwd.transf(...)

rq.control(tau = 0.5, rq.method = "br", rq.alpha = 0.1, ci = FALSE, iid = TRUE, 
    interp = TRUE, tcrit = TRUE, rq.beta = 0.99995, eps = 1e-06, 
    Mm.factor = 0.8, max.bad.fixup = 3)
               
nleqslv.control(nleqslv.method = c("Broyden", "Newton"), 
    global = c( "dbldog", "pwldog", "qline", "gline", "none" ),
    xscalm = c( "fixed", "auto" ), nleqslv.control = NULL)
    

    
optim.control(optim.method = c("BFGS", "Nelder-Mead", "CG", 
        "L-BFGS-B", "SANN", "Brent"), lower = -Inf, upper = Inf, 
    optim.control = NULL, hessian = TRUE)
 

Arguments

initial.method

character keyword defining whether the function lmrob or rq is used to compute robust initial estimates of the regression parameters β (default "lmrob"). If the fixed effects model matrix has not full columns rank, then lm is used to compute initial values of the regression coefficients. Note that this requires robust estimation.

bhat

initial values for the spatial random effects hatB, with hatB=0 if bhat is equal to NULL (default).

param.tf

a function such as param.transf, which returns a named vector of character strings that define the transformations to be applied to the variogram parameters for model fitting, see Details.

fwd.tf

a function such as fwd.transf, which returns a named list of invertible functions to be used to transform variogram parameters, see Details.

deriv.fwd.tf

a function such as dfwd.transf, which returns a named list of functions corresponding to the first derivatives of fwd.tf, see Details.

bwd.tf

a function such as bwd.transf, which returns the named list of inverse functions corresponding to fwd.tf, see Details.

safe.param

maximum acceptable value for any variogram parameter. If trial parameter values generated by optim or nleqslv exceed safe.param then an error is signalled to force optim or nleqslv to update the trial values (default 1.e12).

psi.func

character keyword defining what ψ_c-function should be used for robust model fitting. Possible values are "logistic" (a scaled and shifted logistic cdf, default),
"t.dist" (re-descending ψ_c-function associated with Student t-distribution with c degrees of freedom) and "huber" (Huber's ψ_c-function).

tuning.psi.nr

positive numeric. If tuning.psi is less than tuning.psi.nr then the model is fitted robustly by solving the robustified estimating equations, and for tuning.psi equal to or larger than tuning.psi.nr the Gaussian restricted loglikelihood is maximized (default 1000).

min.rweight

positive numeric. “Robustness weight” of the initial lmrob fit that observations must exceed to be used for computing robust initial estimates of variogram parameters by setting initial.param = TRUE (see georob; default 0.25).

irwls.initial

logical. If TRUE (default) the estimating equations of B and β are always solved by IRWLS from the initial estimates of hatB and hatβ. If FALSE then IRWLS starts from respective estimates computed for the variogram parameter estimates of the previous iteration of nleqslv or optim.

irwls.maxiter

positive integer equal to the maximum number of IRWLS iterations to solve the estimating equations of B and β (default 50).

irwls.reltol

numeric convergence criterion for IRWLS. Convergence is assumed if
max(abs(oldres-newres)) < sqrt(reltol*nugget), where oldres and
newres are the estimated residuals ε_i of the previous and current iterations, respectively.

force.gradient

logical controlling whether the estimating equations or the gradient of the Gaussian restricted loglikelihood are evaluated even if all variogram parameters are fixed (default FALSE).

zero.dist

positive numeric equal to the maximum distance, separating two sampling locations that are still considered as being coincident.

cov.bhat

logical controlling whether the covariances of hatB are returned by georob (default FALSE).

full.cov.bhat

logical controlling whether the full covariance matrix (TRUE) or only the variance vector of hatB is returned (default FALSE).

cov.betahat

logical controlling whether the covariance matrix of hatβ is returned (default TRUE).

cov.bhat.betahat

logical controlling whether the covariance matrix of hatB and hatβ is returned (default FALSE).

cov.delta.bhat

logical controlling whether the covariances of B-hatB are returned (default TRUE).

full.cov.delta.bhat

logical controlling whether the full covariance matrix (TRUE) or only the variance vector of B-hatB is returned (default TRUE).

cov.delta.bhat.betahat

logical controlling whether the covariance matrix of B-hatB and hatβ is returned (default TRUE).

cov.ehat

logical controlling whether the covariances of hatε=Y-X hatβ - hatB are returned (default TRUE).

full.cov.ehat

logical controlling whether the full covariance matrix (TRUE) or only the variance vector of hatε=Y-X hatβ - hatB is returned (default FALSE).

cov.ehat.p.bhat

logical controlling whether the covariances of hatε+ hatB=Y-X hatβ are returned (default FALSE).

full.cov.ehat.p.bhat

logical controlling whether the full covariance matrix (TRUE) or only the variance vector of hatε+ hatB=Y-X hatβ is returned (default FALSE).

aux.cov.pred.target

logical controlling whether a covariance term required for the back-transformation of kriging predictions of log-transformed data is returned (default FALSE).

min.condnum

positive numeric. Minimum acceptable ratio of smallest to largest singular value of the model matrix X (default 1.e-12).

rq

a list of arguments passed to rq or a function such as rq.control that generates such a list (see rq for allowed arguments).

lmrob

a list of arguments passed to the control argument of lmrob or a function such as lmrob.control that generates such a list (see lmrob.control for allowed arguments).

nleqslv

a list of arguments passed to {nleqslv} or a function such as nleqslv.control that generates such a list (see nleqslv for allowed arguments).

optim

a list of arguments passed to optim or a function such as optim.control that generates such a list (see optim for allowed arguments).

full.output

logical controlling how much output is returned in georob object. Proper functioning requires default (TRUE)

.

...

named vectors of functions, extending the definition of transformations for variogram parameters (see Details).

variance, snugget, nugget, scale, alpha, beta, delta, gamma, kappa, lambda, mu, nu

character strings with names of transformation functions of the variogram parameters.

f1, f2, omega, phi, zeta

character strings with names of transformation functions of the variogram parameters.

tau, rq.method, rq.alpha, ci, iid, interp, tcrit

arguments passed as ... to rq. Note that rq. is stripped on passing from the argument names on passing.

rq.beta, eps, Mm.factor, max.bad.fixup

arguments passed as ... to rq. Note that rq. is stripped on passing from the argument names on passing.

nleqslv.method, global, xscalm, nleqslv.control

arguments passed to related arguments of nleqslv. Note that nleqslv. is stripped from the argument names on passing.

optim.method, lower, upper, hessian, optim.control

arguments passed to related arguments of optim. Note that optim. is stripped from the argument names on passing.

Details

The arguments param.tf, fwd.tf, deriv.fwd.tf, bwd.tf define the transformations of the variogram parameters for robust REML estimation. Implemented are currently "log", "rad" (conversion from degree to radian) and "identity" (= no) transformations. These are the possible values that the many arguments of the function param.transf accept (as quoted character strings) and these are the names of the list components returned by fwd.transf, dfwd.transf and bwd.transf. Additional transformations can be implemented by:

  1. Extending the function definitions by arguments like

    fwd.tf = fwd.transf(c(my.fun = function(x) your transformation)),
    deriv.fwd.tf = dfwd.transf(c(my.fun = function(x) your derivative)),
    bwd.tf = bwd.transf(c(my.fun = function(x) your back-transformation)),

  2. Assigning to a given argument of param.transf the name of the new function, e.g.
    variance = "my.fun".

Note the values given for the arguments of param.transf must match the names of the functions returned by fwd.transf, dfwd.transf and bwd.transf.

Author(s)

Andreas Papritz andreas.papritz@env.ethz.ch

See Also

georobIntro for a description of the model and a brief summary of the algorithms; georob for (robust) fitting of spatial linear models; georobObject for a description of the class georob; plot.georob for display of REML variogram estimates; predict.georob for computing robust kriging predictions; and finally georobMethods for further methods for the class georob.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
## Not run: 
data( meuse )

r.logzn.rob <- georob(log(zinc) ~ sqrt(dist), data = meuse, locations = ~ x + y,
    variogram.model = "exponential",
    param = c( variance = 0.15, nugget = 0.05, scale = 200 ),
    tuning.psi = 1, initial.method = "rq", 
    control = georob.control(cov.bhat = TRUE, cov.ehat.p.bhat = TRUE), verbose = 2)
  
qqnorm(rstandard(r.logzn.rob, level = 0)); abline(0, 1)
qqnorm(ranef(r.logzn.rob, standard = TRUE)); abline(0, 1)

## End(Not run)

georob documentation built on May 2, 2019, 6:53 p.m.