Description Usage Format Note Source Examples
A set of 10 locus for 276 individuals of the chestnut blight fungus Cryphonectria parasitica.
1 |
An object of class ggene
.
The coordinates of the individuals were slightly jittered (a few centimeters) because some individuals were superimposed. Jittering removed the duplicated points, hence the various warning messages issued by svariog
. There is no consequences on the variograms because jeterring implied distances much lower than lag distance.
Dutech, C., J.-P. Rossi, O. Fabreguettes and C. Robin 2008. Geostatistical genetic analysis for inferring the dispersal pattern of a partially clonal species: example of the chestnut blight fungus. Molecular ecology 17: 4597-4607.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | data(crypho)
# check sampling scheme
plot(crypho$coord[,1],crypho$coord[,2], asp=1)
# compute matrix of weights
count <- genocount(X=crypho)
mat <- genoweight(X=crypho,genotyp=count$vec)
# compute distance intervals
d <- distlag(dist=crypho$coord, dmin=0,distance.lag=50)
# compute weighted variogram
wva <- varioWeight(X=crypho, weights=mat, uvec=d)
# plot the variogram for raw data
plot(wva$svario$u, wva$svario$gamma, col="black", type="b",
ylim=range(c(wva$svario$gamma,wva$svario$v)), xlab="distance", ylab="semivariance")
# add the weighted variogram
points(wva$svario$u, wva$svario$v, col="red", type="b", pch=4)
legend("top", legend=c("raw", "weighted"), col=c("black", "red"), lty="solid", pch=c(1,4), bty="n")
## Not run:
#performs randomization on raw variogram
va <- svariog(X=crypho, plot=FALSE)
env <- randsvariog(var=va, X=crypho, nsim=9, bounds=NULL, save.sim=FALSE)
#compute the weighted variogram
wva <- varioWeight(X=crypho, weights=mat)
#performs the randomizations on weighted variogram
env2 <- randsvariog(var=wva, X=crypho, nsim=9, bounds=NULL, save.sim=FALSE, weights=mat)
# plot results
xx <- c(wva$svario$u, rev(wva$svario$u))
yy <- c(env$env[,1], rev(env$env[,2]))
plot(xx, yy, type = "n", xlab = "distance", ylab = "semivariance",
ylim=range(c(env$env[,1], env$env[,2], env2$env[,1], env2$env[,2])))
polygon(xx, yy, col = "lightgrey", border = "black")
xx <- c(wva$svario$u, rev(wva$svario$u))
yy <- c(env2$env[,1], env2$env[,2])
points(xx, yy, type = "l")
polygon(xx, yy, col = "lightblue", border = "blue")
points(wva$svario$u, wva$svario$v, col="blue", typ="b")
points(wva$svario$u, wva$svario$gamma, col="black", type="b", lty="solid", bty="n")
## End(Not run)
# fit exponential model to empirical variogram
va <- svariog(X=crypho, plot=TRUE, messages=FALSE)
fit <- fitsvariog(vario=va, ini.cov.pars=c(0.03,100), nugget=0.1, max.dist=300, plot = TRUE)
fit$param
###
# compute variogram map
map <- svarmap(X=crypho,cutoff=1000, width=50) ; plot(map)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.