Simulate Artificial Data from an Island Model

Share:

Description

Simulate artificial data using the coalescent, and return summary statistics from each dataset.

Usage

1
  sim.island.model(number.of.simulations,mutation.model,total.number.of.demes,number.of.loci,number.of.sampled.demes,sample.sizes)

Arguments

number.of.simulations

total number of simulations

mutation.model

a character string indicating the mutation model. Possible values are "IAM" (infinite island model),"KAM" (K-allele model) and "SMM" (stepwise mutation model)

total.number.of.demes

total number of demes in the island model

number.of.loci

total number of simulated loci

number.of.sampled.demes

number of demes sampled

sample.sizes

number of genes sampled in each deme

Details

Simulate artificial data using a coalescent-based simulator, and return summary statistics from each dataset.

Value

a matrix of summary statistics.

Examples

1
2
3
4
5
6
7
8
9
## This is to generate a prior distribution of the model parameters.

prior <- generate.prior(number.of.simulations = 1e3,prior.theta = 'UNI',min.theta = 0.1, max.theta = 5,prior.M = 'UNI',min.M = 0.1,max.M = 5)

## This is to generate summary statistics from simulated data.

stats <- sim.island.model(number.of.simulations = 1e3,mutation.model = 'SMM',total.number.of.demes = 10,number.of.loci = 20,number.of.sampled.demes = 10,sample.sizes = 50)

stats