# The Normal-Gamma distribution

### Description

Density and random generation for the normal-gamma distribution with parameters b, c, g and h. Also contours and confidence regions.

### Usage

1 2 3 4 5 | ```
dnormgamma(mu, tau, b, c, g, h)
rnormgamma(n, b, c, g, h)
NGacontour(mu, tau, b, c, g, h, p = NULL, ...)
``` |

### Arguments

`mu` |
vector of quantities |

`tau` |
vector of quantities |

`b` |
mean |

`c` |
must be strictly positive. |

`g` |
must be strictly positive. |

`h` |
must be strictly positive. |

`n` |
sample size |

`p` |
probability |

`...` |
Arguments to be passed to the plot function when plotting contours |

### Note

If (mu,tau)^T~NGa(b,c,g,h) then mu|tau~N(b,1/(c*tau)) and tau~Ga(g,h). Also mu~t_(2g)(b,h/(gc)).

### Examples

1 2 3 4 5 6 | ```
dnormgamma(1, 2, 1, 2, 5, 3)
rnormgamma(1, 1, 2, 5, 3)
mu=seq(2,4,len=1000)
tau=seq(0,30,len=1000)
NGacontour(mu,tau,3,1,4,0.35,0.95)
NGacontour(mu,tau,2.5,30,20,2,0.95,add=TRUE,lty=3)
``` |

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker. Vote for new features on Trello.