Description Usage Details Value Author(s) References Examples
Formulas of primary growth models commonly used in predictive microbiology
1 2 3 4 5 6 7 |
These models describe the evolution of the decimal logarithm of the microbial count (LOG10N) as a function of the time (t).
baranyi
is the model of Baranyi and Roberts (1994) with four parameters (LOG10N0, mumax, lag, LOG10Nmax)
baranyi_without_Nmax
is the model of Baranyi and Roberts (1994) with three parameters (LOG10N0, mumax, lag), without braking
baranyi_without_lag
is the model of Baranyi and Roberts (1994) with three parameters (LOG10N0, mumax, LOG10Nmax), without lag
buchanan
is the three-phase linear model proposed by Buchanan et al. (1997)
buchanan_without_Nmax
is the two-phase linear model with three parameters (LOG10N0, mumax, lag), without braking
buchanan_without_lag
is the two-phase linear model with three parameters (LOG10N0, mumax, LOG10Nmax), without lag
gompertzm
is the modified Gompertz model introduced by Gibson et al. (1988) and reparameterized by Zwietering et al. (1990)
A formula
Florent Baty florent.baty@gmail.com
Marie-Laure Delignette-Muller ml.delignette@vetagro-sup.fr
Baranyi J and Roberts, TA (1994) A dynamic approach to predicting bacterial growth in food, International Journal of Food Microbiology, 23, 277-294.
Buchanan RL, Whiting RC, Damert WC (1997) When is simple good enough: a comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiology, 14, 313-326.
Gibson AM, Bratchell N, Roberts TA (1988) Predicting microbial growth: growth responses of salmonellae in a laboratory medium as affected by pH, sodium chloride and storage temperature. International Journal of Food Microbiology, 6, 155-178.
Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K (1990) Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56, 1875-1881.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 | # Example 1
data(growthcurve1)
nls1 <- nls(baranyi, growthcurve1,
list(lag=4, mumax=1, LOG10N0 = 4, LOG10Nmax = 9))
nls2 <- nls(gompertzm,growthcurve1,
list(lag = 4, mumax = 1, LOG10N0 = 4, LOG10Nmax = 9))
nls3 <- nls(buchanan, growthcurve1,
list(lag = 4, mumax = 1, LOG10N0 = 4, LOG10Nmax = 9))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
plotfit(nls1, smooth = TRUE)
plotfit(nls2, smooth = TRUE)
plotfit(nls3, smooth = TRUE)
par(def.par)
# Example 2
data(growthcurve2)
nls4 <- nls(baranyi_without_Nmax, growthcurve2,
list(lag = 2, mumax = 0.4, LOG10N0 = 7.4))
nls5 <- nls(buchanan_without_Nmax,growthcurve2,
list(lag = 2, mumax = 0.4, LOG10N0 = 7.4))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,1))
plotfit(nls4, smooth = TRUE)
plotfit(nls5, smooth = TRUE)
par(def.par)
# Example 3
data(growthcurve3)
nls6 <- nls(baranyi_without_lag, growthcurve3,
list(mumax = 1, LOG10N0 = 0, LOG10Nmax = 5))
nls7 <- nls(buchanan_without_lag, growthcurve3,
list(mumax = 1, LOG10N0 = 0, LOG10Nmax = 5))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,1))
plotfit(nls6, smooth = TRUE)
plotfit(nls7, smooth = TRUE)
par(def.par)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.