Description Usage Details Value Author(s) References Examples
Formulas of primary survival models commonly used in predictive microbiology
1 2 3 4 5 6 7 8 |
These models describe the evolution of the decimal logarithm of the microbial count (LOG10N) as a function of the time (t).
geeraerd
is the model of Geeraerd et al. (2005) with four parameters (LOG10N0, kmax, Sl, LOG10Nres)
geeraerd_without_Nres
is the model of of Geeraerd et al. (2005) with three parameters (LOG10N0, kmax, Sl), without tail
geeraerd_without_Sl
is the model of of Geeraerd et al. (2005) with three parameters (LOG10N0, kmax, Nres), without shoulder
mafart
is the Weibull model as parameterized by Mafart et al. (2002) with three parameters (p, delta, LOG10N0)
albert
is the modified Weibull model proposed by Albert and Mafart (2005) with four parameters (p, delta, LOG10N0, LOG10Nres)
trilinear
is the three-phase linear model with four parameters (LOG10N0, kmax, Sl, LOG10Nres)
bilinear_without_Nres
is the two-phase linear model with three parameters (LOG10N0, kmax, Sl), without tail
bilinear_without_Sl
is the two-phase linear model with three parameters (LOG10N0, kmax, LOG10Nres), without shoulder
A formula
Florent Baty florent.baty@gmail.com
Marie-Laure Delignette-Muller ml.delignette@vetagro-sup.fr
Albert I, Mafart P (2005) A modified Weibull model for bacterial inactivation. International Journal of Food Microbiology, 100, 197-211.
Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102, 95-105.
Mafart P, Couvert O, Gaillard S, Leguerinel I (2002) On calculating sterility in thermal preservation methods : application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72, 107-113.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 | # Example 1
data(survivalcurve1)
nls1a <- nls(geeraerd, survivalcurve1,
list(Sl = 5, kmax = 1.5, LOG10N0 = 7, LOG10Nres = 1))
nls1b <- nls(trilinear, survivalcurve1,
list(Sl = 5, kmax = 1.5, LOG10N0 = 7, LOG10Nres = 1))
nls1c <- nls(albert,survivalcurve1,
list(p = 1.2, delta = 4, LOG10N0 = 7, LOG10Nres = 1))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
overview(nls1a)
plotfit(nls1a, smooth = TRUE)
overview(nls1b)
plotfit(nls1b, smooth = TRUE)
overview(nls1c)
plotfit(nls1c, smooth = TRUE)
par(def.par)
# Example 2
data(survivalcurve2)
nls2a <- nls(geeraerd_without_Nres, survivalcurve2,
list(Sl = 10, kmax = 1.5, LOG10N0 = 7.5))
nls2b <- nls(bilinear_without_Nres, survivalcurve2,
list(Sl = 10, kmax = 1.5, LOG10N0 = 7.5))
nls2c <- nls(mafart, survivalcurve2,
list(p = 1.5, delta = 8, LOG10N0 = 7.5))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
overview(nls2a)
plotfit(nls2a, smooth = TRUE)
overview(nls2b)
plotfit(nls2b, smooth = TRUE)
overview(nls2c)
plotfit(nls2c, smooth = TRUE)
par(def.par)
# Example 3
data(survivalcurve3)
nls3a <- nls(geeraerd_without_Sl, survivalcurve3,
list(kmax = 4, LOG10N0 = 7.5, LOG10Nres = 1))
nls3b <- nls(bilinear_without_Sl, survivalcurve3,
list(kmax = 4, LOG10N0 = 7.5, LOG10Nres = 1))
nls3c <- nls(mafart, survivalcurve3,
list(p = 0.5, delta = 0.2, LOG10N0 = 7.5))
def.par <- par(no.readonly = TRUE)
par(mfrow = c(2,2))
overview(nls3a)
plotfit(nls3a, smooth = TRUE)
overview(nls3b)
plotfit(nls3b, smooth = TRUE)
overview(nls3c)
plotfit(nls3c, smooth = TRUE)
par(def.par)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.