Nothing
####---- effective Relative Latent Model Complexity computation ----####
effective_rlmc <- function(df,
r.tau.prior,
MM = 10 ^ 6,
output = "sample",
step = ifelse(output == "prob", 0.03, NULL)) {
# computation of the effective relative latent model complexity by MC sampling
# input:
# df: data frame containing a column df$sigma
# r.tau.prior: randomisation function for the prior
# MM: number of MC samples
# output: "sample", "summary", "prob"
# step: step value for bins for "prob"
# results:
# descriptive statistics or sample for the effective MRLMC
# sample: sample
# summary: descriptive statistics: summary: min, 0.25, 0.5, mean, 0.75, max
# prob: a data frame with x,y columns for plotting
if(! output %in% c("sample", "summary", "prob"))
stop("The specified output is not supported. Possible values are 'sample', 'summary' and 'prob'.")
set.seed(12567)
tau_sim <- r.tau.prior(MM)
kk <- length(df$sigma) # number od studies in the data frame
pdsum <- 0
for (i in 1:kk) {
sim_ICCi <- tau_sim ^ 2 / (tau_sim ^ 2 + df$sigma[i] ^ 2)
pdsum <- pdsum + sim_ICCi
}
if (output == "sample") {
return(pdsum / kk)
}
if (output == "summary") {
return(summary(pdsum / kk))
}
if (output == "prob") {
data <- pdsum / kk
breaks <- seq(0, 1, by = step)
bin <- cut(data, breaks, include.lowest = TRUE)
est <- tabulate(bin, length(levels(bin)))
y <- est / (diff(breaks) * length(data))
x <- breaks[-1] - step / 2
return(data.frame(x = x, y = y))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.