Description Usage Arguments Details Value Author(s) References Examples
The function preprocess performs a preprocessing of microarray data.
| 1 2 | 
| Xtrain | a (ntrain x p) data matrix of predictors.  | 
| Xtest | a (ntest x p) matrix containing the predictors for the test data
set.  | 
| Threshold |  a vector of length 2 containing the values (threshmin,threshmax) for 
thresholding data in preprocess. Data is thresholded to value threshmin and ceiled to value 
threshmax. If  | 
| Filtering |  a vector of length 2 containing the values (FiltMin,FiltMax) for filtering genes 
in preprocess. Genes with max/min$<= FiltMin$ and (max-min)$<= FiltMax$ are excluded. 
If  | 
| log10.scale | a logical value equal to TRUE if a log10-transformation has to be done. | 
| row.stand | a logical value equal to TRUE if a standardisation in row has to be done. | 
The pre-processing steps recommended by Dudoit et al. (2002) are performed. The default values are those adapted for Colon data.
A list with the following components:
| pXtrain | the (ntrain x p') matrix containing the preprocessed train data. | 
| pXtest | the (ntest x p') matrix containing the preprocessed test data. | 
Sophie Lambert-Lacroix (http://membres-timc.imag.fr/Sophie.Lambert/) and Julie Peyre (http://www-lmc.imag.fr/lmc-sms/Julie.Peyre/).
Dudoit, S. and Fridlyand, J. and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97, 77–87.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | # load plsgenomics library
library(plsgenomics)
# load Colon data
data(Colon)
IndexLearn <- c(sample(which(Colon$Y==2),27),sample(which(Colon$Y==1),14))
Xtrain <- Colon$X[IndexLearn,]
Ytrain <- Colon$Y[IndexLearn]
Xtest <- Colon$X[-IndexLearn,]
# preprocess data
resP <- preprocess(Xtrain= Xtrain, Xtest=Xtest,Threshold = c(100,16000),Filtering=c(5,500),
				log10.scale=TRUE,row.stand=TRUE)
# how many genes after preprocess ?
dim(resP$pXtrain)[2]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.