R/fletcherpowell.R

Defines functions fletcher_powell

Documented in fletcher_powell

##
##  c g m i n . R  Conjugate Gradient Minimization
##


fletcher_powell <- function(x0, f, g = NULL,
                            maxiter = 1000, tol = .Machine$double.eps^(2/3)) {
    eps <- .Machine$double.eps
    if (tol < eps) tol <- eps
    if (!is.numeric(maxiter) || length(maxiter) > 1 || maxiter < 1)
        stop("Argument 'maxiter' must be a positive integer.")
    maxiter <- floor(maxiter)
    if (! is.numeric(x0))
        stop("Argument 'x0' must be a numeric vector.")
    n <- length(x0)
    if (n == 1)
        stop("Function 'f' is univariate; use some other optimization method.")
    
    # User provided or numerical gradient
    f <- match.fun(f)
    if (! is.null(g)) {
        g <- match.fun(g)
    } else {
        g <- function(x) grad(f, x)   
    }     

    x <- x0  # column vector?
    H <- diag(1, n, n)
    f0 <- f(x)
    g0 <- g(x)  # row vector !

    for (k in 1:maxiter) {
        s <- - H %*% as.matrix(g0)  # downhill direction
        # Find minimal f(x + a*s) along the direction s
        f1 <- f0
        z <- sqrt(sum(s^2))
        if (z == 0) return(list(xmin = x, fmin = f1, ninter = k))

        s <- c(s / z)
        a1 <- 0
        a3 <- 1; f3 <- f(x + a3*s)
        while (f3 >= f1) {
            a3 <- a3/2; f3 <- f(x + a3*s)
            if (a3 < tol/2) return(list(xmin = x, fmin = f1, niter = k))
        }

        a2 <- a3/2; f2 <- f(x + a2*s)
        h1 <- (f2 - f1)/a2
        h2 <- (f3 -f2)/(a3 - a2)
        h3 <- (h2 - h1)/a3
        a0 <- 0.5*(a2 - h1/h3); f0 <- f(x + a0*s)
        
        if (f0 < f3) a <- a0
        else         a <- a3

        d <- a * s; dp <- as.matrix(d)
        xnew <- x + d
        fnew <- f(xnew)
        gnew <- g(xnew)
        y <- gnew - g0; yp <- as.matrix(y)
        A <- (dp %*% d) / sum(d * y)
        B <- (H %*% yp) %*% t(H %*% yp) / c(y %*% H %*% yp)
        Hnew <- H + A - B
        if (max(abs(d)) < tol) break

        # Prepare for next iteration
        H <- Hnew
        f0 <- fnew
        g0 <- gnew
        x <- xnew
    }
    if (k == maxiter)
        warning("Max. number of iterations reached -- may not converge.")

    return(list(xmin = x, fmin = f(x), niter = k))
}


# alias -- deprecated
# cgmin <- function(x0, f, g = NULL,
#                   maxiter = 1000, tol = .Machine$double.eps^(2/3)) {
#     warning("Function 'cgmin' deprecated: use 'fletcher_powell' instead.")
#     fletcher_powell(x0, f, g, maxiter = maxiter, tol = tol)
# }

Try the pracma package in your browser

Any scripts or data that you put into this service are public.

pracma documentation built on March 19, 2024, 3:05 a.m.