Nothing
##
## f z e r o . R
##
fzero <- function(fun, x, maxiter = 500, tol = 1e-12, ...) {
if (!is.numeric(x) || length(x) > 2)
stop("Argument 'x' must be a scalar or a vector of length 2.")
err <- try(fun <- match.fun(fun), silent = TRUE)
if(inherits(err, "try-error")) {
stop("Argument function 'fun' not known in parent environment.")
} else {
f <- function(x) fun(x, ...)
}
zin <- NULL
if (length(x) == 2) {
if (x[1] <= x[2]) {
a <- x[1]; b <- x[2]
} else {
warning("Left endpoint bigger than right one: exchanged points.")
a <- x[2]; b <- x[1]
}
zin <- .zeroin(f, a, b, maxiter = maxiter, tol = tol)
} else { # try to get b
a <- x; fa <- f(a)
if (fa == 0) return(list(x = a, fval = fa))
if (a == 0) {
aa <- 1
} else {
aa <- a
}
bb <- c(0.9*aa, 1.1*aa, aa-1, aa+1, 0.5*aa, 1.5*aa,
-aa, 2*aa, -10*aa, 10*aa)
for (b in bb) {
fb <- f(b)
if (fb == 0) return(list(x = b, fval = fb))
if (sign(fa) * sign(fb) < 0) {
zin <- .zeroin(f, a, b, maxiter = maxiter, tol = tol)
break
}
}
}
if (is.null(zin)) {
warning("No interval w/ function 'f' changing sign was found.")
return(list(x = NA, fval = NA))
} else {
x1 <- zin$bra[1]; x2 <- zin$bra[2]
f1 <- zin$ket[1]; f2 <- zin$ket[2]
x0 <- sum(zin$bra)/2; f0 <- f(x0)
if (f0 < f1 && f0 < f2) {
return(list(x = x0, fval = f0))
} else if (f1 <= f2) {
return(list(x = x1, fval = f1))
} else {
return(list(x = x2, fval = f2))
}
}
}
.zeroin <- function(f, a, b, maxiter = 100, tol = 1e-07) {
stopifnot(is.numeric(a), is.numeric(b),
length(a) == 1, length(b) == 1)
mu <- 0.5
eps <- .Machine$double.eps
info <- 0
## Set up and prepare ...
if (a > b) {
tt <- a; a <- b; b <- tt
}
fa <- f(a); fb <- f(b)
nfev <- 2
if (sign(fa) * sign(fb) > 0)
stop("Function must differ in sign at interval endpoints.")
itype <- 1
if (abs(fa) < abs(fb)) {
u <- a; fu <- fa
} else {
u <- b; fu <- fb
}
d <- e <- u
fd <- fe <- fu
mba <- mu * (b - a)
niter <- 0
while (niter < maxiter) {
if (itype == 1) {
# The initial test
if ((b-a) <= 2*(2*abs(u)*eps + tol)) {
x <- u; fval <- fu
info <- 1
break
}
if (abs (fa) <= 1e3*abs(fb) && abs(fb) <= 1e3*abs(fa)) {
# Secant step.
c <- u - (a - b) / (fa - fb) * fu
} else {
# Bisection step.
c <- 0.5 * (a + b)
}
d <- u; fd <- fu
itype <- 5
} else if (itype == 2 || itype == 3) {
l <- length(unique(c(fa, fb, fd, fe)))
if (l == 4) {
# Inverse cubic interpolation.
q11 <- (d - e) * fd / (fe - fd)
q21 <- (b - d) * fb / (fd - fb)
q31 <- (a - b) * fa / (fb - fa)
d21 <- (b - d) * fd / (fd - fb)
d31 <- (a - b) * fb / (fb - fa)
q22 <- (d21 - q11) * fb / (fe - fb)
q32 <- (d31 - q21) * fa / (fd - fa)
d32 <- (d31 - q21) * fd / (fd - fa)
q33 <- (d32 - q22) * fa / (fe - fa)
c <- a + q31 + q32 + q33;
}
if (l < 4 || sign(c - a) * sign(c - b) > 0) {
# Quadratic interpolation + newton
a0 <- fa
a1 <- (fb - fa)/(b - a)
a2 <- ((fd - fb)/(d - b) - a1) / (d - a)
# Modification 1: this is simpler and does not seem to be worse.
c <- a - a0/a1
if (a2 != 0) {
c <- a - a0/a1
for (i in 1:itype) {
pc <- a0 + (a1 + a2*(c - b))*(c - a)
pdc <- a1 + a2*(2*c - a - b)
if (pdc == 0) {
c <- a - a0/a1
break
}
c <- c - pc/pdc
}
}
}
itype <- itype + 1
} else if (itype == 4) {
# Double secant step.
c <- u - 2*(b - a)/(fb - fa)*fu
# Bisect if too far.
if (abs (c - u) > 0.5*(b - a)) {
c <- 0.5 * (b + a)
}
itype <- 5
} else if (itype == 5) {
# Bisection step.
c <- 0.5 * (b + a)
itype <- 2
}
# Don't let c come too close to a or b.
delta <- 2 * 0.7 * (2 * abs(u) * eps + tol)
if ((b - a) <= 2*delta) {
c <- (a + b)/2
} else {
c <- max(a + delta, min(b - delta, c))
}
# Calculate new point.
x <- c;
fval <- fc <- f(c)
niter <- niter + 1; nfev <- nfev + 1
# Mod2: skip inverse cubic interpolation if nonmonotonicity is detected.
if (sign(fc - fa) * sign(fc - fb) >= 0) {
## The new point broke monotonicity.
## Disable inverse cubic.
fe <- fc
} else {
e <- d; fe <- fd
}
# Bracketing.
if (sign(fa) * sign(fc) < 0) {
d <- b; fd <- fb
b <- c; fb <- fc
} else if (sign(fb) * sign(fc) < 0) {
d <- a; fd <- fa
a <- c; fa <- fc
} else if (fc == 0) {
a <- b <- c; fa <- fb <- fc
info <- 1
break
} else {
# This should never happen.
stop("zeroin: zero point could not be bracketed")
}
if (abs(fa) < abs(fb)) {
u <- a; fu <- fa
} else {
u <- b; fu <- fb
}
if (b - a <= 2*(2 * abs (u) * eps + tol)) {
info <- 1
break
}
# Skip bisection step if successful reduction.
if (itype == 5 && (b - a) <= mba) {
itype <- 2
}
if (itype == 2) {
mba <- mu * (b - a)
}
} # endwhile
return(list(bra = c(a, b), ket = c(fa, fb), niter = niter, info = info))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.