Nothing
ode23s <- function(f, t0, tfinal, y0, jac = NULL, ...,
rtol = 1e-03, atol = 1e-06, hmax = 0.0) {
stopifnot(is.numeric(y0), is.numeric(t0), length(t0) == 1,
is.numeric(tfinal), length(tfinal) == 1)
if (t0 >= tfinal)
warning("'t0 >= tfinal' may lead to incorrect behavior or results.")
if (is.vector(y0)) {
y0 <- as.matrix(y0)
} else if (is.matrix(y0)) {
if (ncol(y0) != 1)
stop("Argument 'y0' must be a vector or single column matrix.")
}
fun <- match.fun(f)
f <- function(t, y) fun(t, y, ...)
if (length(f(t0, y0)) != length(y0))
stop("Argument 'f' does not describe a system of equations.")
n <- length(y0); m <- length(f(t, y0))
# use finite difference Jacobian
if (is.null(jac)) {
jac <- function(t, x) {
jacob <- matrix(NA, m, n)
hh <- numeric(n); heps <- 5e-06
for (i in 1:n) {
hh[i] <- heps
jacob[, i] <- (f(t, x+hh) - f(t, x-hh)) / (2*heps)
hh[i] <- 0
}
jacob
}
}
# Set initial parameters
d <- 1/(2 + sqrt(2))
cc <- 1/2
e32 <- 6 + sqrt(2)
t <- t0
tdir <- sign(tfinal - t)
h <- tdir * 0.01 * (tfinal - t)
if (hmax == 0.0)
hmax <- 0.1 * abs(tfinal - t)
hmin <- min(16 * eps(tfinal - t), h)
y <- as.matrix(y0)
tout <- c(t)
yout <- c(y)
# Main loop
while (abs(t) < abs(tfinal) && hmin < abs(h)) {
if (abs(t - tfinal) < abs(h))
h <- tfinal - t
J <- jac(t, y)
# approximate time-derivative of f
T <- (f(t + 0.01*h, y) - f(t, y)) / (0.01*h)
# Wolfbrandt coefficient
W <- eye(length(y0)) - h * d * J
# modified Rosenbrock formula
F1 <- f(t, y)
k1 <- qr.solve(W, F1 + h * d * T)
F2 <- f(t + cc * h, y + cc * h * k1)
k2 <- qr.solve(W, F2 - k1) + k1
# 2nd and 3rd order estimates
ynew <- y + h * k2
F3 = f(t + h, ynew)
k3 = qr.solve(W, (F3 - e32*(k2 - F2) - 2*(k1 - F1) + h*d*T))
# estimate error and acceptable error
err <- h/6 * Norm(k1 - 2*k2 + k3)
tau <- max(rtol * max(Norm(y),Norm(ynew)), atol)
# check if new solution is acceptable
if (err <= tau) {
t <- t + h
tout <- c(tout, t)
y <- ynew
yout <- cbind(yout, y)
if (err == 0) err <- eps()/2
# h <- min(hmax, 1.25*h)
} else {
if (h <= hmin)
warning("ode23s: Requested step size too small!")
# h <- max(hmin, 0.5*h)
}
# update the step size
h <- tdir * min(hmax, abs(h)*0.8*(tau/err)^(1/3))
if (abs(h) > hmax)
h <- sign(h)*hmax
}
return(list(t = c(tout), y = t(yout)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.