Nothing
##
## o d e 5 4 . R ODE Solver
##
ode45 = function(f, t0, tfinal, y0, ..., atol = 1e-6, hmax = 0.0)
{
stopifnot(is.numeric(y0), is.numeric(t0), length(t0) == 1,
is.numeric(tfinal), length(tfinal) == 1)
if (is.vector(y0)) {
y0 <- as.matrix(y0)
}
else if (is.matrix(y0) && ncol(y0) != 1) {
stop("Argument 'y0' must be a vector or single column matrix.")
}
fun <- match.fun(f)
f <- function(t, y) fun(t, y, ...)
pow <- 1/6 # see p.91 in Ascher & Petzold
nsteps <- 1e3 * (tfinal - t0) # estimated number of steps
if (hmax == 0.0)
hmax <- (tfinal - t0)/2.5 # max stepsize
# Define the Dormand-Prince 4(5) coefficients
dp = matrix(c(0, 0, 0, 0, 0, 0,
1/5, 0, 0, 0, 0, 0,
3/40, 9/40, 0, 0, 0, 0,
44/45, -56/15, 32/9, 0, 0, 0,
19372/6561, -25360/2187, 64448/6561, -212/729, 0, 0,
9017/3168, -355/33, 46732/5247, 49/176, -5103/18656, 0,
35/384, 0, 500/1113, 125/192, -2187/6784, 11/84),
nrow = 7, ncol = 6, byrow=TRUE)
b4 = c(5179/57600, 0, 7571/16695, 393/640, -92097/339200, 187/2100, 1/40)
b5 = c(35/384, 0, 500/1113, 125/192, -2187/6784, 11/84, 0)
cc = rowSums(dp)
# Initialization
t <- t0
hmin <- (tfinal - t)/1e20
h <- (tfinal - t)/100 # initial step size guess
x <- as.matrix(y0) # ensure x is a column vector
nstates <- size(x,1)
tout <- zeros(nsteps, 1) # preallocating memory
xout <- zeros(nsteps, nstates)
nsteps_rej <- 0
nsteps_acc <- 1
tout[nsteps_acc] <- t # first output time
xout[nsteps_acc,] <- x # first output solution = IC's
# Main loop using Dormand-Prince 4(5) pair
kk <- x %*% zeros(1, 7)
kk[, 1] <- f(t, x)
while (t < tfinal && h >= hmin) {
if (t + h > tfinal) h <- tfinal - t
for (j in 1:6)
kk[, j+1] <- f(t + cc[j+1]*h, x + h*kk[, 1:j] %*% as.matrix(dp[j+1, 1:j]))
# compute the 4th and 5th order estimates
x4 <- x + h * (kk %*% b4)
x5 <- x + h * (kk %*% b5)
# estimate the errors
gamma1 <- x5 - x4 # local truncation error
delta = Norm(gamma1, Inf); # actual error
tau = atol * max(Norm(x, Inf), 1.0) # allowable error
# update solution only if the error is acceptable
if (delta < tau) {
t = t + h
x = x5 # "local extrapolation"
nsteps_acc <- nsteps_acc + 1
tout[nsteps_acc] <- t
xout[nsteps_acc, ] <- x
kk[, 1] <- kk[, 7]
} else { # unacceptable integration step
nsteps_rej <- nsteps_rej + 1
}
# update the step size
if (delta == 0.0) delta <- 1e-16
h <- min(hmax, 0.8 * h * (tau/delta)^pow)
}
# Trim output
if (nsteps_acc < nsteps) {
tout <- tout[1:nsteps_acc]
xout <- xout[1:nsteps_acc, ]
}
if (t < tfinal)
warning("Step size grew too small.")
return(list(t = tout, y = xout))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.