Nothing
##
## p a d e . R Pade Approximation
##
pade <- function(p1, p2 = c(1), d1 = 5, d2 = 5) {
stopifnot(is.numeric(p1), is.numeric(p2),
is.numeric(d1), length(d1) == 1, floor(d1) == ceiling(d1), d1 >= 0,
is.numeric(d2), length(d2) == 1, floor(d2) == ceiling(d2), d2 >= 0)
if (d1 == 0 && d2 == 0)
return(list(r1 = p1[length(p1)], r2 = p2[length(p2)]))
z <- rep(0, d1 + d2 + 3)
p2 <- rev(c(z, p2))[1:(d1+d2+3)]
p1 <- rev(c(z, p1))[1:(d1+d2+3)]
L <- Toeplitz(p2[1:(d1+d2)]); L[upper.tri(L)] <- 0
R <- Toeplitz(p1[1:(d1+d2)]); R[upper.tri(R)] <- 0
# generate the linear system of coefficient equations
D1 <- if (d1 > 0) 1:d1 else c()
D2 <- if (d2 > 0) 1:d2 else c()
A <- cbind(L[, D1], -R[, D2])
b <- p2[1]*p1[2:(d1+d2+1)] - p1[1]*p2[2:(d1+d2+1)]
# imitate pinv() if some eigenvalues are zero
P <- svd(A); U <- P$u; V <- P$v; s <- P$d
r <- sum(s > max(dim(A)) * max(s) * .Machine$double.eps)
if (r == 0) {
pinvA <- matrix(0, nrow = nrow(A), ncol = ncol(A))
} else {
S <- diag(1/s[1:r])
pinvA <- V[, 1:r] %*% S %*% t(U[, 1:r])
}
# solve the linear system of coefficient equations
B <- zapsmall(pinvA %*% b)
# reconstruct the rational function
r1 <- rev(c(p1[1], B[1:d1]))
r2 <- rev(c(p2[1], B[(d1+1):length(B)]))
# scale such that max(r2) = 1
rmax <- max(abs(r2))
if (rmax == 0) rmax <- 1
r1 <- r1 / rmax
r2 <- r2 / rmax
# return numerator and denominator
return(list(r1 = r1, r2 = r2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.