Nothing
##
## s t e e p _ d e s c e n t . R Minimization by Steepest Descent
##
steep_descent <- function (x0, f, g = NULL, info = FALSE,
maxiter = 100, tol = .Machine$double.eps^(1/2)) {
eps <- .Machine$double.eps
if (! is.numeric(x0))
stop("Argument 'x0' must be a numeric vector.")
n <- length(x0)
# User provided or numerical gradient
f <- match.fun(f)
if (is.null(g)) g <- function(x) grad(f, x)
else g <- match.fun(g)
if (info) cat(0, "\t", x0, "\n")
x <- x0
k <- 1
while (k <= maxiter) {
f1 <- f(x)
g1 <- g(x)
z1 <- sqrt(sum(g1^2))
if (z1 == 0) {
warning(
paste("Zero gradient at:", x, f1, "-- not applicable.\n"))
return(list(xmin = NA, fmin = NA, niter = k))
}
# else use gradient as unit vector
g1 <- g1 / z1
a1 <- 0
a3 <- 1; f3 <- f(x - a3*g1)
# Find a minimum on the gradient line (or line search)
while (f3 >= f1) {
a3 <- a3/2; f3 <- f(x - a3*g1)
if (a3 < tol/2) {
if (info)
cat("Method of steepest descent converged to:", x, "\n")
x[abs(x) < eps] <- 0
return(list(xmin = x, fmin = f(x), niter = k))
}
}
# Check an intermediate point (for faster convergence)
a2 <- a3/2; f2 <- f(x - a2*g1)
h1 <- (f2 - f1)/a2
h2 <- (f3 -f2)/(a3 - a2)
h3 <- (h2 - h1)/a3
a0 <- 0.5*(a2 - h1/h3); f0 <- f(x - a0*g1)
if (f0 < f3) a <- a0
else a <- a3
x <- x - a*g1
if (info) cat(k, "\t", x, "\n")
k <- k + 1
}
if(k > maxiter)
warning("Maximum number of iterations reached -- not converged.\n")
return(list(xmin = NA, fmin = NA, niter = k))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.