Description Usage Arguments Details Value Author(s) See Also Examples
Initial setup of the quasi-likelihood approximation model
1 | getQLmodel(runs, lb, ub, obs, X = NULL, criterion = "qle", ...)
|
runs |
object of class |
lb |
lower bounds defining the (hyper)box of the parameter domain for QL estimation |
ub |
upper bounds defining the (hyper)box of the parameter domain for QL estimation |
obs |
numeric vector of observed statistics |
X |
matrix of sample locations (model parameters) |
criterion |
name of criterion function to be minimized for QL estimation (see |
... |
arguments passed to |
The function is a wrapper of the functions QLmodel, fitSIRFk
and thus sets up the quasi-likelihood approximation model all at once given the simulation results
of the initial design runs. Note that the bound constraints lb,ub can be different from the ones
used to construct the initial design by simQLdata. This allows to use, for example, an enlarged
parameter space for the design points and a smaller one for the QL parameter estimation which might prevent the
algorithm from exceeding the parameter space during optimization.
Object of class QLmodel
M. Baaske
1 2 3 4 5 6 7 8 9 10 11 | data(normal)
# simulate model at a minimum of required design points
sim <- simQLdata(sim=qsd$simfn,nsim=5,N=8,
method="maximinLHS",lb=qsd$lower,ub=qsd$upper)
# true and error-free observation
obs <- structure(c("T1"=2,"T2"=1), class="simQL")
# construct QL approximation model
qsd <- getQLmodel(sim,qsd$lower,qsd$upper,obs,var.type="wcholMean")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.