Description Usage Arguments Details Value Author(s) References See Also Examples
Performs a sensitivity analysis using the method described in Gilbert, Bosch, and Hudgens (2003).
1 2 3 4 5 6 |
z |
vector; contains the grouping values (e.g., treatment assignment) for each record. |
s |
vector; indicates whether a record is selected. |
y |
outcome vector. Can be |
beta |
vector; values of the sensitivity parameter. |
selection |
The value of |
groupings |
Vector of two elements |
empty.principal.stratum |
vector of two elements |
ci |
numeric vector; confidence interval level, defaults to 0.95 |
ci.method |
character; method by which the confidence interval and
variance are calculated. Can be “analytic” or
“bootstrap”. Defaults to |
na.rm |
logical; indicates whether records that are invalid due to |
N.boot |
integer; number of bootstrap repetitions that will be run when
|
interval |
numeric vector of length 2. Controls the range limits used to by optimise to estimate alphahat. |
oneSidedTest |
logical. Return a one sided confidence interval for ACE. Defaults
to |
twoSidedTest |
logical. Return a two sided confidence interval for ACE. Defaults
to |
isSlaveMode |
logical. Internal Use only. Used in recursion. |
Performs a sensitivity analysis estimating the average causal effect among those who would have been selected regardless of treatment assignment (ACE). The method assumes no interference (i.e., potential outcomes of all subjects are unaffected by treatment assignment of other subjects), ignorable (i.e., random) treatment assignment, and monotonicity (i.e., one of the principal strata is empty). ACE is identified by assuming a value of the sensitivity parameter beta, where exp(beta) has an odds ratio interpretation:
If empty.principal.stratum=c(S(g0)==not selected, S(g1)==selected) then given selected if assigned g0, the odds of being selected if assigned g1 multiplicatively increase exp(beta) for every 1-unit increase in Y(g0).
If empty.principal.stratum=c(S(g0)==selected, S(g1)==not selected) then given selected if assigned g1, the odds of being selected if assigned g0 multiplicatively increase exp(beta) for every 1-unit increase in Y(g1).
Specifying beta=-Inf
or
beta=Inf
calls sensitivityHHS
.
an object of class sensitivity2d
.
ACE |
ACE=E(Y(g1)-Y(g0)|S(g1)==S(g0)==selection). Vector of the estimated ACE values for specified |
ACE.ci |
vector; confidence interval of ACE determined by
quantiles of bootstrap if |
ACE.var |
vector; estimated variance of ACE. |
beta |
vector of user-specified beta values |
alphahat |
vector of estimated values of alpha |
y0 |
vector of unique |
Fas0 |
matrix of estimated empirical distribution function values for
|
y1 |
vector of unique |
Fas1 |
matrix of estimated empirical distribution function values for
|
Bryan E. Shepherd
Department of Biostatistics
Vanderbilt University
Charles Dupont
Department of Biostatistics
Vanderbilt University
Gilbert PB, Bosch RJ, and Hudgens MG (2003), "Sensitivity Analysis for the Assessment of Causal Vaccine Effects of Viral Load in HIV Vaccine Trials," Biometrics 59, 531-541.
sensitivityHHS
, sensitivityJR
, sensitivitySGL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | data(vaccine.trial)
ans<-with(vaccine.trial,
sensitivityGBH(z=treatment,s=hiv.outcome,y=logVL,
beta=c(0,.25,.5,.75,1,1.25,1.5),
selection="infected",
groupings=c("placebo","vaccine"),
empty.principal.stratum=c("not infected","infected"),
N.boot=100)
)
ans
ans<-with(vaccine.trial,
sensitivityGBH(z=treatment,s=hiv.outcome,y=logVL,
beta=c(-Inf,-1,-0.75,-0.5,-0.25,0,.25,.5,.75,1,Inf),
selection="infected",
groupings=c("placebo","vaccine"),
empty.principal.stratum=c("not infected","infected"),
ci.method="bootstrap",
N.boot=100)
)
ans
|
Empty Principle Stratum: S(placebo) = not infected, S(vaccine) = infected
ACE: E(Y(vaccine) - Y(placebo) | S(placebo) = S(vaccine) = infected)
0.00 0.25 0.50 0.75 1.00 1.25 1.50
0.4422777 0.3896437 0.3389877 0.2919282 0.2493324 0.2114175 0.1780977
ACE confidence interval:
By analytic method
ci.probs
2.5% 97.5%
0.00 0.22740332 0.6571521
0.25 0.17241550 0.6068720
0.50 0.11720238 0.5607729
0.75 0.06416697 0.5196894
1.00 0.01504383 0.4836210
1.25 -0.02928454 0.4521196
1.50 -0.06850629 0.4247017
By bootstrap method, N = 100
ci.probs
2.5% 97.5%
0.00 0.250821082 0.6172243
0.25 0.189741494 0.5668285
0.50 0.125558150 0.5240571
0.75 0.079299414 0.4843677
1.00 0.037595396 0.4521137
1.25 -0.005602387 0.4195092
1.50 -0.047606241 0.3864527
Empty Principle Stratum: S(placebo) = not infected, S(vaccine) = infected
ACE: E(Y(vaccine) - Y(placebo) | S(placebo) = S(vaccine) = infected)
-Inf -1.00 -0.75 -0.50 -0.25 0.00
0.94628842 0.63668723 0.59372114 0.54619861 0.49519461 0.44227773
0.25 0.50 0.75 1.00 Inf
0.38964373 0.33898766 0.29192820 0.24933240 -0.06428061
ACE confidence interval:
By bootstrap method, N = 100
ci.probs
2.5% 97.5%
-Inf 0.66892011 1.1879175
-1.00 0.42081536 0.8422593
-0.75 0.38637224 0.8032633
-0.50 0.35146686 0.7613387
-0.25 0.31266476 0.7156311
0.00 0.25632322 0.6661761
0.25 0.18871312 0.6195716
0.50 0.13541496 0.5773782
0.75 0.08637259 0.5395157
1.00 0.04181278 0.5014318
Inf -0.34237071 0.1972803
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.