Description Usage Arguments Details Value Author(s) References See Also Examples
An implementation of Kelejian and Prucha's generalised moments estimator for the autoregressive parameter in a spatial model with a spatially lagged dependent variable.
1 2 3 |
formula |
a symbolic description of the model to be fit. The details
of model specification are given for |
data |
an optional data frame containing the variables in the model. By default the variables are taken from the environment which the function is called. |
listw |
a |
listw2 |
a |
na.action |
a function (default |
zero.policy |
default NULL, use global option value; if TRUE assign zero to the lagged value of zones without
neighbours, if FALSE (default) assign NA - causing |
pars |
starting values for lambda and sigma squared for GMM optimisation, if missing (default), approximated from initial 2sls model as the autocorrelation coefficient corrected for weights style and model sigma squared |
scaleU |
Default FALSE: scale the OLS residuals before computing the moment matrices; only used if the |
control |
A list of control parameters. See details in optim or nlminb |
verbose |
default NULL, use global option value; if TRUE, reports function values during optimization. |
method |
default nlminb, or optionally a method passed to optim to use an alternative optimizer |
robust |
see |
legacy |
see |
W2X |
see |
When the control list is set with care, the function will converge to values close to the ML estimator without requiring computation of the Jacobian, the most resource-intensive part of ML estimation.
A list object of class gmsar
lambda |
simultaneous autoregressive error coefficient |
coefficients |
GMM coefficient estimates (including the spatial autocorrelation coefficient) |
rest.se |
GMM coefficient standard errors |
s2 |
GMM residual variance |
SSE |
sum of squared GMM errors |
parameters |
number of parameters estimated |
lm.model |
NULL |
call |
the call used to create this object |
residuals |
GMM residuals |
lm.target |
NULL |
fitted.values |
Difference between residuals and response variable |
formula |
model formula |
aliased |
NULL |
zero.policy |
zero.policy for this model |
LL |
NULL |
vv |
list of internal bigG and litg components for testing optimisation surface |
optres |
object returned by optimizer |
pars |
start parameter values for optimisation |
Hcov |
NULL |
na.action |
(possibly) named vector of excluded or omitted observations if non-default na.action argument used |
Gianfranco Piras and Roger Bivand
Kelejian, H. H., and Prucha, I. R., 1999. A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model. International Economic Review, 40, pp. 509–533; Cressie, N. A. C. 1993 Statistics for spatial data, Wiley, New York.
Roger Bivand, Gianfranco Piras (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. Journal of Statistical Software, 63(18), 1-36. http://www.jstatsoft.org/v63/i18/.
optim
, nlminb
, GMerrorsar
, GMargminImage
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | data(oldcol)
COL.errW.GM <- gstsls(CRIME ~ INC + HOVAL, data=COL.OLD, nb2listw(COL.nb, style="W"))
summary(COL.errW.GM)
aa <- GMargminImage(COL.errW.GM)
levs <- quantile(aa$z, seq(0, 1, 1/12))
image(aa, breaks=levs, xlab="lambda", ylab="s2")
points(COL.errW.GM$lambda, COL.errW.GM$s2, pch=3, lwd=2)
contour(aa, levels=signif(levs, 4), add=TRUE)
COL.errW.GM <- gstsls(CRIME ~ INC + HOVAL, data=COL.OLD, nb2listw(COL.nb, style="W"), scaleU=TRUE)
summary(COL.errW.GM)
listw <- nb2listw(COL.nb)
W <- as(listw, "CsparseMatrix")
trMat <- trW(W, type="mult")
impacts(COL.errW.GM, tr=trMat)
|
Loading required package: sp
Loading required package: Matrix
Call:
gstsls(formula = CRIME ~ INC + HOVAL, data = COL.OLD, listw = nb2listw(COL.nb,
style = "W"))
Residuals:
Min 1Q Median 3Q Max
-37.87710 -5.74981 -0.21447 6.19490 22.85527
Type: GM SARAR estimator
Coefficients: (GM standard errors)
Estimate Std. Error z value Pr(>|z|)
Rho_Wy 0.454171 0.185680 2.4460 0.01445
(Intercept) 43.782818 10.923192 4.0082 6.117e-05
INC -0.994831 0.382774 -2.5990 0.00935
HOVAL -0.267076 0.091984 -2.9035 0.00369
Lambda: 0.016647
Residual variance (sigma squared): 103.36, (sigma: 10.167)
GM argmin sigma squared: 93.729
Number of observations: 49
Number of parameters estimated: 6
Call:
gstsls(formula = CRIME ~ INC + HOVAL, data = COL.OLD, listw = nb2listw(COL.nb,
style = "W"), scaleU = TRUE)
Residuals:
Min 1Q Median 3Q Max
-37.87710 -5.74981 -0.21447 6.19490 22.85527
Type: GM SARAR estimator
Coefficients: (GM standard errors)
Estimate Std. Error z value Pr(>|z|)
Rho_Wy 0.454171 0.185680 2.4460 0.01445
(Intercept) 43.782818 10.923192 4.0082 6.117e-05
INC -0.994831 0.382774 -2.5990 0.00935
HOVAL -0.267076 0.091984 -2.9035 0.00369
Lambda: 0.016647
Residual variance (sigma squared): 103.36, (sigma: 10.167)
(scaled) GM argmin sigma squared: 0.96653
Number of observations: 49
Number of parameters estimated: 6
Impact measures (lag, trace):
Direct Indirect Total
INC -1.0543769 -0.7682309 -1.8226078
HOVAL -0.2830618 -0.2062420 -0.4893038
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.