# wavEDOF: Equivalent degrees of freedom (EDOF) estimates for a... In wmtsa: Wavelet Methods for Time Series Analysis

## Description

Let X be a collection of M uncorrelated zero mean Gaussian random variables (RVs). The sum of the squares of the RVs in X will obey a scaled chi-square distribution with M degrees of freedom (DOF). If, however, the original Gaussian RVs are (partially) correlated, we can approximate the distribution of the sum of the squares of (correlated Gaussian) RVs using a scaled chi-square distribution with the DOF adjusted for the correlation in the RVs. These adjusted DOF estimates are known as the equivalent degrees of freedom (EDOF). In the context of unbiased wavelet variance analysis, the EDOF can be used to estimate confidence intervals that are guaranteed to have non-negative bounds.

This program calculates three estimates of the EDOF for each level of a discrete wavelet transform. The three modes are described as follows for the MODWT of an an input sequence X(t):

EDOF 1

Large sample approximation that requires an SDF estimation via wavelet coefficients.

n1 = s(j,0)^2 / Aj,

where s(j,tau) is the autocovariance sequence defined by

s(j,tau) = (1 / Mj) * sum[t=0,..., Mj - 1]{d(j,t)}

and d(j,t) are the Mj jth level interior MODWT wavelet coefficients and Aj is defined as

Aj = s(j,0)/2 + sum[tau=1,...,Mj-1]s(j,tau)^2.

EDOF 2

Large sample approximation where the SDF is known a priori.

n2 = 2 * (sum[k=1,...,floor((Mj-1)/2)] Cj(f(k)))^2 / sum[k=1,...,floor((Mj-1)/2)] (Cj(f(k)))^2,

where f(k)=k/Mj and Cj = Hj(f) Sx(f) is the product of Daubechies wavelet filter squared gain function and the spectral density function of X(t).

EDOF 3

Large sample approximation using a band-pass approximation for the SDF.

n3 = max(Mj/2, 1)

.

See references for more details.

## Usage

 ```1 2``` ```wavEDOF(x, wavelet="s8", levels=NULL, sdf=NULL, sdfargs=NULL, sampling.interval=1, n.fft=1024) ```

## Arguments

 `x` an object of class `wavTransform` or a vector containing a uniformly-sampled real-valued time series. `levels` a vector containing the decomposition levels. Default: when `x` is of class `wavTransform` then `levels` is set to `1:n.level`, otherwise `levels` is set to `1:J`, where `J` is the maximum wavelet transform level in which there exists at least one interior wavelet coefficient. `n.fft` a positive integer (greater than one) defining the number of frequencies to use in evaluating the SDF for EDOF 2 calculations. The frequencies are uniformly distributed over the interval [0, Nyquist] ala f=[0, 1/P , 2/P, 3/P, ..., (n.freq-1)/P] where P=2*(n.freq-1)/sampling.interval. Only used when the input SDF is not `NULL`. Default: `1024`. `sampling.interval` sampling interval of the time series. Default: `1`. `sdf` a spectral density function of the process corresponding to the input time series. This input must be a function whose first argument is `f` (representing frequency). At a minimum, the SDF must be defined over frequencies [0, Nyquist] where `Nyquist=1/(2*sampling.interval)`. Additional arguments that are needed to calculate the SDF should be passed via the `sdfargs` parameter. This argument is used only for calculating mode 2 EDOF. If the EDOF mode 2 estimates are not desired, specify this this argument as `NULL` and the EDOF mode 2 and corresponding confidence intervals will not be calculated. See the `mutilsSDF` function for more details. Default: `NULL`. `sdfargs` a list of arguments passed directly to the SDF function ala `do.call`. Default: `NULL` (no additional arguments). `wavelet` a character string denoting the filter type. See `wavDaubechies` for details. Only used if input `x` is a time series. Default: `"s8"`.

## Value

a list containing the EDOF estimates for modes 1, 2 and 3 as well as the block-dependent unbiased wavelet variance estimates.

## References

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University Press, 2000.

`wavVar`, `wavVarConfidence`, `mutilsSDF`.

## Examples

 ``` 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25``` ```## initialize variables n.level <- 9 wavelet <- "d6" N <- 4096 phi <- 0.9 ## define input SDF S <- function(f, phi) 1/(1 + phi^2 - 2*phi*cos(2*pi*f)) sdfarg <- list(phi=phi) ## create series and MODWT set.seed(100) x <- rnorm(N) W <- wavMODWT(x, wavelet=wavelet, n.level=n.level) ## calculate EDOF using the wavTransform object z1 <- wavEDOF(W, sdf=S, sdfarg=sdfarg) print(z1) ## calculate EDOF using original time series z2 <- wavEDOF(x, wavelet=wavelet, levels=seq(n.level), sdf=S, sdfarg=sdfarg) print(z2) ## compare the two approaches print(all.equal(z1,z2)) ```

### Example output

```\$EDOF1
d1         d2         d3         d4         d5         d6         d7
2531.10774 1809.04819  913.66096  429.21140  230.32673  110.38035   33.53655
d8         d9
25.87522   11.39955

\$EDOF2
d1          d2          d3          d4          d5          d6
2854.722849 1627.268382  781.241375  381.451301  188.807683   94.354081
d7          d8          d9
45.134301   18.974047    5.219906

\$EDOF3
d1          d2          d3          d4          d5          d6
2045.500000 1020.250000  507.625000  251.312500  123.156250   59.078125
d7          d8          d9
27.039062   11.019531    3.009766

\$variance.unbiased
d1          d2          d3          d4          d5          d6
0.504909819 0.263174237 0.121538461 0.062628195 0.026776715 0.014814154
d7          d8          d9
0.009611466 0.004053923 0.000457349

\$n.coeff
d1   d2   d3   d4   d5   d6   d7   d8   d9
4091 4081 4061 4021 3941 3781 3461 2821 1541

\$EDOF1
d1         d2         d3         d4         d5         d6         d7
2531.10774 1809.04819  913.66096  429.21140  230.32673  110.38035   33.53655
d8         d9
25.87522   11.39955

\$EDOF2
d1          d2          d3          d4          d5          d6
2854.722849 1627.268382  781.241375  381.451301  188.807683   94.354081
d7          d8          d9
45.134301   18.974047    5.219906

\$EDOF3
d1          d2          d3          d4          d5          d6
2045.500000 1020.250000  507.625000  251.312500  123.156250   59.078125
d7          d8          d9
27.039062   11.019531    3.009766

\$variance.unbiased
d1          d2          d3          d4          d5          d6
0.504909819 0.263174237 0.121538461 0.062628195 0.026776715 0.014814154
d7          d8          d9
0.009611466 0.004053923 0.000457349

\$n.coeff
d1   d2   d3   d4   d5   d6   d7   d8   d9
4091 4081 4061 4021 3941 3781 3461 2821 1541

[1] TRUE
```

wmtsa documentation built on May 31, 2017, 5:05 a.m.