View source: R/DiagnosticCogarch.R
Diagnostic.Cogarch | R Documentation |
The function check the statistical properties of the COGARCH(p,q) model. We verify if the process has a strict positive stationary variance model.
Diagnostic.Cogarch(yuima.cogarch, param = list(), matrixS = NULL, mu = 1, display = TRUE)
yuima.cogarch |
an object of class |
param |
a list containing the values of the parameters |
matrixS |
a Square matrix. |
mu |
first moment of the Levy measure. |
display |
a logical variable, if |
The functon returns a List with entries:
meanVarianceProc |
Unconditional Stationary mean of the variance process. |
meanStateVariable |
Unconditional Stationary mean of the state process. |
stationary |
If |
positivity |
If |
YUIMA Project Team
## Not run: # Definition of the COGARCH(1,1) process driven by a Variance Gamma nois: param.VG <- list(a1 = 0.038, b1 = 0.053, a0 = 0.04/0.053,lambda = 1, alpha = sqrt(2), beta = 0, mu = 0, x01 = 50.33) cog.VG <- setCogarch(p = 1, q = 1, work = FALSE, measure=list(df="rvgamma(z, lambda, alpha, beta, mu)"), measure.type = "code", Cogarch.var = "y", V.var = "v", Latent.var="x", XinExpr=TRUE) # Verify the stationarity and the positivity of th variance process test <- Diagnostic.Cogarch(cog.VG,param=param.VG) show(test) # Simulate a sample path set.seed(210) Term=800 num=24000 samp.VG <- setSampling(Terminal=Term, n=num) sim.VG <- simulate(cog.VG, true.parameter=param.VG, sampling=samp.VG, method="euler") plot(sim.VG) # Estimate the model res.VG <- gmm(sim.VG, start = param.VG, Est.Incr = "IncrPar") summary(res.VG) # Check if the estimated COGARCH(1,1) has a positive and stationary variance test1<-Diagnostic.Cogarch(res.VG) show(test1) # Simulate a COGARCH sample path using the estimated COGARCH(1,1) # and the recovered increments of underlying Variance Gamma Noise esttraj<-simulate(res.VG) plot(esttraj) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.