bns.test | R Documentation |
Tests the presence of jumps using the statistic proposed in Barndorff-Nielsen and Shephard (2004,2006) for each component.
bns.test(yuima, r = rep(1, 4), type = "standard", adj = TRUE)
yuima |
an object of |
r |
a vector of non-negative numbers or a list of vectors of non-negative numbers. Theoretically, it is necessary that |
type |
type of the test statistic to use. |
adj |
logical; if |
For the i
-th component, the test statistic is equal to the i
-th component of sqrt(n)*(mpv(yuima,2)-mpv(yuima,c(1,1)))/sqrt(vartheta*mpv(yuima,r))
when type="standard"
, sqrt(n)*log(mpv(yuima,2)/mpv(yuima,c(1,1)))/sqrt(vartheta*mpv(yuima,r)/mpv(yuima,c(1,1))^2)
when type="log"
and sqrt(n)*(1-mpv(yuima,c(1,1))/mpv(yuima,2))/sqrt(vartheta*mpv(yuima,r)/mpv(yuima,c(1,1))^2)
when type="ratio"
. Here, n
is equal to the length of the i
-th component of the zoo.data
of yuima
minus 1 and vartheta
is pi^2/4+pi-5
. When adj=TRUE
, mpv(yuima,r)[i]/mpv(yuima,c(1,1))^2)[i]
is replaced with 1 if it is less than 1.
A list with the same length as the zoo.data
of yuima
. Each component of the list has class “htest
” and contains the following components:
statistic |
the value of the test statistic of the corresponding component of the |
p.value |
an approximate p-value for the test of the corresponding component. |
method |
the character string “ |
data.name |
the character string “ |
Theoretically, this test may be invalid if sampling is irregular.
Yuta Koike with YUIMA Project Team
Barndorff-Nielsen, O. E. and Shephard, N. (2004) Power and bipower variation with stochastic volatility and jumps, Journal of Financial Econometrics, 2, no. 1, 1–37.
Barndorff-Nielsen, O. E. and Shephard, N. (2006) Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4, no. 1, 1–30.
Huang, X. and Tauchen, G. (2005) The relative contribution of jumps to total price variance, Journal of Financial Econometrics, 3, no. 4, 456–499.
lm.jumptest
, mpv
, minrv.test
, medrv.test
, pz.test
set.seed(123) # One-dimensional case ## Model: dXt=t*dWt+t*dzt, ## where zt is a compound Poisson process with intensity 5 and jump sizes distribution N(0,0.1). model <- setModel(drift=0,diffusion="t",jump.coeff="t",measure.type="CP", measure=list(intensity=5,df=list("dnorm(z,0,sqrt(0.1))")), time.variable="t") yuima.samp <- setSampling(Terminal = 1, n = 390) yuima <- setYuima(model = model, sampling = yuima.samp) yuima <- simulate(yuima) plot(yuima) # The path seems to involve some jumps bns.test(yuima) # standard type bns.test(yuima,type="log") # log type bns.test(yuima,type="ratio") # ratio type # Multi-dimensional case ## Model: dXkt=t*dWk_t (k=1,2,3) (no jump case). diff.matrix <- diag(3) diag(diff.matrix) <- c("t","t","t") model <- setModel(drift=c(0,0,0),diffusion=diff.matrix,time.variable="t", solve.variable=c("x1","x2","x3")) yuima.samp <- setSampling(Terminal = 1, n = 390) yuima <- setYuima(model = model, sampling = yuima.samp) yuima <- simulate(yuima) plot(yuima) bns.test(yuima)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.