get.counting.data | R Documentation |
yuima.PPR
This function extracts arrival times from an object of class yuima.PPR
.
get.counting.data(yuimaPPR,type="zoo")
yuimaPPR |
An object of class |
type |
By default |
By default the function returns an object of class zoo. The arrival times can be extracted by applying the method index
to the output
## Not run: ################## # Hawkes Process # ################## # Values of parameters. mu <- 2 alpha <- 4 beta <-5 # Law definition my.rHawkes <- function(n){ res <- t(t(rep(1,n))) return(res) } Law.Hawkes <- setLaw(rng = my.rHawkes) # Point Process Definition gFun <- "mu" Kernel <- "alpha*exp(-beta*(t-s))" modHawkes <- setModel(drift = c("0"), diffusion = matrix("0",1,1), jump.coeff = matrix(c("1"),1,1), measure = list(df = Law.Hawkes), measure.type = "code", solve.variable = c("N"), xinit=c("0")) prvHawkes <- setPPR(yuima = modHawkes, counting.var="N", gFun=gFun, Kernel = as.matrix(Kernel), lambda.var = "lambda", var.dx = "N", lower.var="0", upper.var = "t") true.par <- list(mu=mu, alpha=alpha, beta=beta) set.seed(1) Term<-70 n<-7000 # Simulation trajectory time.Hawkes <-system.time( simHawkes <- simulate(object = prvHawkes, true.parameter = true.par, sampling = setSampling(Terminal =Term, n=n)) ) # Arrival times of the Counting process. DataHawkes <- get.counting.data(simHawkes) TimeArr <- index(DataHawkes) ################################## # Point Process Regression Model # ################################## # Values of parameters. mu <- 2 alpha <- 4 beta <-5 # Law definition my.rKern <- function(n,t){ res0 <- t(t(rgamma(n, 0.1*t))) res1 <- t(t(rep(1,n))) res <- cbind(res0,res1) return(res) } Law.PPRKern <- setLaw(rng = my.rKern) # Point Process definition modKern <- setModel(drift = c("0.4*(0.1-X)","0"), diffusion = c("0","0"), jump.coeff = matrix(c("1","0","0","1"),2,2), measure = list(df = Law.PPRKern), measure.type = c("code","code"), solve.variable = c("X","N"), xinit=c("0.25","0")) gFun <- "exp(mu*log(1+X))" # Kernel <- "alpha*exp(-beta*(t-s))" prvKern <- setPPR(yuima = modKern, counting.var="N", gFun=gFun, Kernel = as.matrix(Kernel), lambda.var = "lambda", var.dx = "N", lower.var="0", upper.var = "t") # Simulation Term<-100 seed<-1 n<-10000 true.parKern <- list(mu=mu, alpha=alpha, beta=beta) set.seed(seed) # set.seed(1) time.simKern <-system.time( simprvKern <- simulate(object = prvKern, true.parameter = true.parKern, sampling = setSampling(Terminal =Term, n=n)) ) plot(simprvKern,main ="Counting Process with covariates" ,cex.main=0.9) # Arrival Times CountVar <- get.counting.data(simprvKern) TimeArr <- index(CountVar) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.