limiting.gamma | R Documentation |
To confirm assysmptotic normality of theta estimators.
limiting.gamma(obj,theta,verbose=FALSE)
obj |
an yuima or yuima.model object. |
theta |
true theta |
verbose |
an option for display a verbose process. |
Calculate the value of limiting covariance matrices Gamma. The returned values gamma1 and gamma2 are used to confirm assysmptotic normality of theta estimators. this program is limitted to 1-dimention-sde model for now.
gamma1 |
a theoretical figure for variance of theta1 estimator |
gamma2 |
a theoretical figure for variance of theta2 estimator |
we need to fix this routine.
The YUIMA Project Team
set.seed(123) ## Yuima diff.matrix <- matrix(c("theta1"), 1, 1) myModel <- setModel(drift=c("(-1)*theta2*x"), diffusion=diff.matrix, time.variable="t", state.variable="x") n <- 100 mySampling <- setSampling(Terminal=(n)^(1/3), n=n) myYuima <- setYuima(model=myModel, sampling=mySampling) myYuima <- simulate(myYuima, xinit=1, true.parameter=list(theta1=0.6, theta2=0.3)) ## theorical figure of theta theta1 <- 3.5 theta2 <- 1.3 theta <- list(theta1, theta2) lim.gamma <- limiting.gamma(obj=myYuima, theta=theta, verbose=TRUE) ## return theta1 and theta2 with list lim.gamma$list ## return theta1 and theta2 with vector lim.gamma$vec
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.