Nothing
#' NMR peak identification (plasma/serum samples)
#'
#' Identify given regions and return a data frame with plausible assignations
#' in human plasma/serum samples.
#'
#' @return a data frame with plausible assignations.
#'
#' @examples
#' # We identify regions from from the corresponding ppm storaged in a vector.
#' ppm_to_assign <- c(4.060960203, 3.048970634,2.405935596,
#' 3.24146865,0.990616851,1.002075066,0.955325548)
#' identification <- nmr_identify_regions_blood (ppm_to_assign)
#' @export
#' @family peak detection functions
#' @family peak integration functions
#' @param ppm_to_assign A vector with the ppm regions to assign
#' @param num_proposed_compounds set the number of proposed metabolites sorted by the number times reported in the HMDB: `HMDB_blood`.
#' @param verbose Logical value. Set it to TRUE to print additional information
nmr_identify_regions_blood <- function(ppm_to_assign, num_proposed_compounds = 3, verbose = FALSE){
HMDB_blood <- NULL
utils::data("HMDB_blood", package = "AlpsNMR", envir = environment())
output_assignation_list <- HMDB_blood[NULL,]
for (ppm in ppm_to_assign) {
lower_ppm_right_edge <- ppm - 0.015
higher_ppm_left_edge <- ppm + 0.015
ind <- intersect(which(HMDB_blood$Shift_ppm < higher_ppm_left_edge),
which(HMDB_blood$Shift_ppm > lower_ppm_right_edge))
assignation_list <- as.data.frame(HMDB_blood[ind,])
if (isTRUE(verbose)) {
message("your peak at ",ppm, " probably corresponds to ",assignation_list[1,1], ", ",assignation_list[2,1], " or ", assignation_list[3,1])
message("")
}
output_assignation_list <- rbind(output_assignation_list, assignation_list[seq_len(num_proposed_compounds),])
}
output_assignation_list$ppm_to_assign <- rep(ppm_to_assign, each = num_proposed_compounds)
# counts=output_assignation_list %>% dplyr::count(Metabolite) %>% dplyr::arrange(dplyr::desc(n))
# colnames(counts) <- c("Metabolite", "Counts")
# output_assignation_list <- merge(output_assignation_list,counts, by = "Metabolite")
output_assignation_list <- output_assignation_list[order(output_assignation_list$ppm_to_assign,-output_assignation_list$Blood_concentration, -output_assignation_list$n_reported_in_Blood),]
return(output_assignation_list)
}
#' The Human Metabolome DataBase multiplet table: blood metabolites normally found in NMR-based metabolomics
#'
#' @name HMDB_blood
#' @docType data
#' @references \url{https://hmdb.ca/}
#' @keywords data
NULL
#' NMR peak identification (urine samples)
#'
#' Identify given regions and return a data frame with plausible assignations
#' in human urine samples. The data frame contains the column "Bouatra_2013" showing if
#' the proposed metabolite was reported in this publication as regular urinary metabolite.
#'
#' @return a data frame with plausible assignations.
#'
#' @examples
#' # We identify regions from from the corresponding ppm storaged in a vector.
#' ppm_to_assign <- c(4.060960203, 3.048970634,2.405935596,
#' 3.24146865,0.990616851,1.002075066,0.955325548)
#' identification <- nmr_identify_regions_urine (ppm_to_assign, num_proposed_compounds = 5)
#' @export
#' @family peak detection functions
#' @family peak integration functions
#' @param ppm_to_assign A vector with the ppm regions to assign
#' @param num_proposed_compounds set the number of proposed metabolites sorted by the number times reported in the HMDB: `HMDB_urine`.
#' @param verbose Logical value. Set it to TRUE to print additional information
nmr_identify_regions_urine <- function(ppm_to_assign, num_proposed_compounds = 5, verbose = FALSE){
HMDB_urine <- NULL
utils::data("HMDB_urine", package = "AlpsNMR", envir = environment())
output_assignation_list <- HMDB_urine[NULL,]
for (ppm in ppm_to_assign) {
lower_ppm_right_edge <- ppm - 0.015
higher_ppm_left_edge <- ppm + 0.015
ind <- intersect(which(HMDB_urine$Shift_ppm < higher_ppm_left_edge),
which(HMDB_urine$Shift_ppm > lower_ppm_right_edge))
assignation_list <- as.data.frame(HMDB_urine[ind,])
if (isTRUE(verbose)) {
message("your peak at ",ppm, " probably corresponds to ",assignation_list[1,1], ", ",assignation_list[2,1],", ", assignation_list[3,1],", ", assignation_list[4,1]," or ", assignation_list[5,1])
message("")
}
output_assignation_list <- rbind(output_assignation_list,assignation_list[seq_len(num_proposed_compounds),])
}
output_assignation_list$ppm_to_assign <- rep(ppm_to_assign,each = num_proposed_compounds)
#counts=output_assignation_list %>% dplyr::count(Metabolite) %>% dplyr::arrange(dplyr::desc(n))
#colnames(counts) <- c("Metabolite", "Counts")
#output_assignation_list <- merge(output_assignation_list,counts, by = "Metabolite")
output_assignation_list <- output_assignation_list[order(output_assignation_list$ppm_to_assign,-output_assignation_list$Urine_concentration, -output_assignation_list$n_reported_in_Urine),]
return(output_assignation_list)
}
#' The Human Metabolome DataBase multiplet table: urine metabolites normally found in NMR-based metabolomics
#'
#' @name HMDB_urine
#' @docType data
#' @references \url{https://hmdb.ca/}
#' @keywords data
NULL
#' NMR peak identification (cell samples)
#'
#' Identify given regions and return a data frame with plausible assignations
#' in cell samples.
#'
#' @return a data frame with plausible assignations.
#'
#' @examples
#' # We identify regions from from the corresponding ppm storaged in a vector.
#' ppm_to_assign <- c(4.060960203, 3.048970634,2.405935596,
#' 3.24146865,0.990616851,1.002075066,0.955325548)
#' identification <- nmr_identify_regions_cell (ppm_to_assign, num_proposed_compounds = 3)
#' @export
#' @family peak detection functions
#' @family peak integration functions
#' @param ppm_to_assign A vector with the ppm regions to assign
#' @param num_proposed_compounds set the number of proposed metabolites in `HMDB_cell`.
#' @param verbose Logical value. Set it to TRUE to print additional information
nmr_identify_regions_cell <- function(ppm_to_assign, num_proposed_compounds = 3, verbose = FALSE){
HMDB_cell <- NULL
utils::data("HMDB_cell", package = "AlpsNMR", envir = environment())
output_assignation_list <- HMDB_cell[NULL,]
for (ppm in ppm_to_assign) {
lower_ppm_right_edge <- ppm - 0.015
higher_ppm_left_edge <- ppm + 0.015
ind <- intersect(which(HMDB_cell$Shift_ppm < higher_ppm_left_edge),
which(HMDB_cell$Shift_ppm > lower_ppm_right_edge))
assignation_list <- as.data.frame(HMDB_cell[ind,])
if (isTRUE(verbose)) {
message("your peak at ",ppm, " probably corresponds to ",assignation_list[1,1], ", ",assignation_list[2,1],", ", assignation_list[3,1])
message("")
}
output_assignation_list <- rbind(output_assignation_list,assignation_list[seq_len(num_proposed_compounds),])
}
output_assignation_list$ppm_to_assign <- rep(ppm_to_assign,each = num_proposed_compounds)
output_assignation_list <- output_assignation_list[order(output_assignation_list$ppm_to_assign),]
return(output_assignation_list)
}
#' The Human Metabolome DataBase multiplet table: cell metabolites normally found in NMR-based metabolomics
#'
#' @name HMDB_cell
#' @docType data
#' @references \url{https://hmdb.ca/}
#' @keywords data
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.