Description Usage Arguments Details Value Examples
View source: R/nmr_data_analysis.R
Bootstrap and permutation over PLS-VIP on AlpsNMR can be performed on both nmr_dataset_1D full spectra as well as nmr_dataset_peak_table peak tables.
1 | bp_VIP_analysis(dataset, train_index, y_column, ncomp, nbootstrap = 300)
|
dataset |
An nmr_dataset_family object |
train_index |
set of index used to generate the bootstrap datasets |
y_column |
A string with the name of the y column (present in the metadata of the dataset) |
ncomp |
number of components used in the plsda models |
nbootstrap |
number of bootstrap dataset |
Use of the bootstrap and permutation methods for a more robust variable importance in the projection metric for partial least squares regression
A list with the following elements:
important_vips
: A list with the important vips selected
relevant_vips
: List of vips with some relevance
pls_vip
: Pls-VIPs of every bootstrap
pls_vip_perm
: Pls-VIPs of every bootstrap with permuted variables
pls_vip_means
: Pls-VIPs normaliced differences means
pls_vip_score_diff
: Differences of pls_vip
and pls_vip_perm
pls_models
: pls models of the diferent bootstraps
pls_perm_models
: pls permuted models of the diferent bootstraps
classif_rate
: classification rate of the bootstrap models
general_model
: pls model trained with all train data
general_CR
: classification rate of the general_model
vips_model
: pls model trained with vips selection over all train data
vips_CR
: classification rate of the vips_model
error
: error spected in a t distribution
lower_bound
: lower bound of the confidence interval
upper_bound
: upper bound of the confidence interval
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | # Data analysis for a table of integrated peaks
## Generate an artificial nmr_dataset_peak_table:
### Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
NMRExperiment = as.character(1:num_samples),
Condition = rep(c("A", "B"), times = num_samples/2),
stringsAsFactors = FALSE
)
### The matrix with peaks
peak_means <- runif(n = num_peaks, min = 300, max = 600)
peak_sd <- runif(n = num_peaks, min = 30, max = 60)
peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
mu = peak_means, sd = peak_sd)
colnames(peak_matrix) <- paste0("Peak", 1:num_peaks)
## Artificial differences depending on the condition:
peak_matrix[metadata$Condition == "A", "Peak2"] <-
peak_matrix[metadata$Condition == "A", "Peak2"] + 70
peak_matrix[metadata$Condition == "A", "Peak6"] <-
peak_matrix[metadata$Condition == "A", "Peak6"] - 60
### The nmr_dataset_peak_table
peak_table <- new_nmr_dataset_peak_table(
peak_table = peak_matrix,
metadata = list(external = metadata)
)
## We will use a double cross validation, splitting the samples with random
## subsampling both in the external and internal validation.
## The classification model will be a PLSDA, exploring at maximum 3 latent
## variables.
## The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 3)
model <- nmr_data_analysis(
peak_table,
y_column = "Condition",
identity_column = NULL,
external_val = list(iterations = 1, test_size = 0.25),
internal_val = list(iterations = 3, test_size = 0.25),
data_analysis_method = methodology
)
## Area under ROC for each outer cross-validation iteration:
model$outer_cv_results_digested$auroc
## The number of components for the bootstrap models is selected
ncomps <- model$outer_cv_results$`1`$model$ncomp
train_index <- model$train_test_partitions$outer$`1`$outer_train
# Bootstrap and permutation for VIP selection
bp_VIPS <- bp_VIP_analysis(peak_table, # Data to be analized
train_index,
y_column = "Condition",
ncomp = ncomps,
nbootstrap = 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.