nmr_data_analysis: Data analysis

Description Usage Arguments Details Value Examples

View source: R/nmr_data_analysis.R

Description

Data analysis on AlpsNMR can be performed on both nmr_dataset_1D full spectra as well as nmr_dataset_peak_table peak tables.

Usage

1
2
3
4
5
6
7
8
nmr_data_analysis(
  dataset,
  y_column,
  identity_column,
  external_val,
  internal_val,
  data_analysis_method
)

Arguments

dataset

An nmr_dataset_family object

y_column

A string with the name of the y column (present in the metadata of the dataset)

identity_column

NULL or a string with the name of the identity column (present in the metadata of the dataset).

external_val, internal_val

A list with two elements: iterations and test_size. See random_subsampling for further details

data_analysis_method

An nmr_data_analysis_method object

Details

The workflow consists of a double cross validation strategy using random subsampling for splitting into train and test sets. The classification model and the metric to choose the best model can be customized (see new_nmr_data_analysis_method()), but for now only a PLSDA classification model with a best area under ROC curve metric is implemented (see the examples here and plsda_auroc_vip_method)

Value

A list with the following elements:

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
# Data analysis for a table of integrated peaks

## Generate an artificial nmr_dataset_peak_table:
### Generate artificial metadata:
num_samples <- 32 # use an even number in this example
num_peaks <- 20
metadata <- data.frame(
    NMRExperiment = as.character(1:num_samples),
    Condition = rep(c("A", "B"), times = num_samples/2),
    stringsAsFactors = FALSE
)

### The matrix with peaks
peak_means <- runif(n = num_peaks, min = 300, max = 600)
peak_sd <- runif(n = num_peaks, min = 30, max = 60)
peak_matrix <- mapply(function(mu, sd) rnorm(num_samples, mu, sd),
                                            mu = peak_means, sd = peak_sd)
colnames(peak_matrix) <- paste0("Peak", 1:num_peaks)

## Artificial differences depending on the condition:
peak_matrix[metadata$Condition == "A", "Peak2"] <- 
    peak_matrix[metadata$Condition == "A", "Peak2"] + 70

peak_matrix[metadata$Condition == "A", "Peak6"] <- 
    peak_matrix[metadata$Condition == "A", "Peak6"] - 60
    
### The nmr_dataset_peak_table
peak_table <- new_nmr_dataset_peak_table(
    peak_table = peak_matrix,
    metadata = list(external = metadata)
)

## We will use a double cross validation, splitting the samples with random
## subsampling both in the external and internal validation.
## The classification model will be a PLSDA, exploring at maximum 3 latent
## variables.
## The best model will be selected based on the area under the ROC curve
methodology <- plsda_auroc_vip_method(ncomp = 3)
model <- nmr_data_analysis(
    peak_table,
    y_column = "Condition",
    identity_column = NULL,
    external_val = list(iterations = 3, test_size = 0.25),
    internal_val = list(iterations = 3, test_size = 0.25),
    data_analysis_method = methodology
)
## Area under ROC for each outer cross-validation iteration:
model$outer_cv_results_digested$auroc
## Rank Product of the Variable Importance in the Projection
## (Lower means more important)
sort(model$outer_cv_results_digested$vip_rankproducts)

AlpsNMR documentation built on April 1, 2021, 6:02 p.m.