Description Usage Arguments Value Examples
Nodes scores equality test between network
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 | degreeCentralityVertexTest(
expr,
labels,
adjacencyMatrix,
numPermutations = 1000,
options = NULL,
BPPARAM = NULL
)
betweennessCentralityVertexTest(
expr,
labels,
adjacencyMatrix,
numPermutations = 1000,
options = NULL,
BPPARAM = NULL
)
closenessCentralityVertexTest(
expr,
labels,
adjacencyMatrix,
numPermutations = 1000,
options = NULL,
BPPARAM = NULL
)
eigenvectorCentralityVertexTest(
expr,
labels,
adjacencyMatrix,
numPermutations = 1000,
options = NULL,
BPPARAM = NULL
)
clusteringCoefficientVertexTest(
expr,
labels,
adjacencyMatrix,
numPermutations = 1000,
options = NULL,
BPPARAM = NULL
)
|
expr |
Matrix of variables (columns) vs samples (rows) |
labels |
a vector in which a position indicates the phenotype of the corresponding sample or state |
adjacencyMatrix |
a function that returns the adjacency matrix for a given variables values matrix |
numPermutations |
number of permutations that will be carried out in the permutation test |
options |
argument non used in this function |
BPPARAM |
An optional BiocParallelParam instance determining the parallel back-end to be used during evaluation, or a list of BiocParallelParam instances, to be applied in sequence for nested calls to BiocParallel functions. MulticoreParam() |
A table, containing on the columns, the following informations for each variable (rows): "Test Statistic" - difference among the degree centrality of a node in two or more networks associated with each phenotype "Nominal p-value" - the Nominal p-value of the test "Q-value" - the q-value of the test, correction of p-value by FDR to many tests "Factor n" - the node degree centrality in each network compared
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | set.seed(1)
expr <- as.data.frame(matrix(rnorm(120),40,30))
labels<-data.frame(code=rep(0:3,10),names=rep(c("A","B","C","D"),10))
adjacencyMatrix1 <- adjacencyMatrix(method="spearman", association="pvalue",
threshold="fdr", thr.value=0.05, weighted=FALSE)
# The numPermutations number is 1 to do a faster example, but we advise to use unless 1000 permutations in real analysis
# Degree centrality test
diffNetAnalysis(method=degreeCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
seed=NULL, min.vert=5, option=NULL)
# Betweenness centrality test
diffNetAnalysis(method=betweennessCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
seed=NULL, min.vert=5, option=NULL)
# Closeness centrality test
diffNetAnalysis(method=closenessCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
seed=NULL, min.vert=5, option=NULL)
# Eigenvector centrality test
diffNetAnalysis(method=eigenvectorCentralityVertexTest, varFile=expr, labels=labels, varSets=NULL,
adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
seed=NULL, min.vert=5, option=NULL)
# Clustering coefficient test
diffNetAnalysis(method=clusteringCoefficientVertexTest, varFile=expr, labels=labels, varSets=NULL,
adjacencyMatrix=adjacencyMatrix1, numPermutations=1, print=TRUE, resultsFile=NULL,
seed=NULL, min.vert=5, option=NULL)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.