cellsurvLQfit: Fit the linear-quadratic (LQ) model to cell survival data

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/cellsurvLQfit.R

Description

This function calculates the linear coefficient alpha and the coefficient beta of the dose-squared term (see manual for this R-package) for colony counts measured for a set of irradiation doses and repeated experiments. The function is a wrapper for the R-functions glm or lm, which simplifies use of these functions for cell survival data.

Usage

1
cellsurvLQfit(X, method="ml", PEmethod="fit")

Arguments

X

A data frame which contains at least columns Exp, dose, ncells, ncolonies and if there is no 0-value in the dose-column, X has to contain a further column pe for plating efficiencies.

method

Determines the method used for the fit. "ml" is for maximum-likelihood, "ls" for least-squares. "franken" performs weigthed least-squares with weights as described in Franken et al. (2006).

PEmethod

Controls the value of the plating efficiencies, i.e. the colony counts for untreated cells. "fit" calculates fitted plating efficiencies as model parameters, "fix" uses fixed ones calculated from the observed zero dose data or from a column named pe in X.

Details

In the data frame X, Exp identifies the experimental replicates and may be numeric or non-numeric. method="ml" uses R function glm with quasipoisson family and link function "log". method="ls" uses R function lm. PEmethod="fit" fits plating efficiencies for every experiments. PEmethod="fix" uses observed plating efficiencies. If there is no 0-value in the dose-column, PEmethod is overwritten with "fix" and X has to contain a further column pe containing the plating efficiencies, i.e. ncolonies/ncells from untreated cells, not per hundred or percent.

Value

The function returns an object of class cellsurvLQfit, which is similar to classes glm or lm, however containing two additional entries, type and PEmethod, which are used for printing and plotting. The full result is returned invisibly, i.e. the function has to be used with print or plot or assigned to a variable, say for e.g. fit as in the example below.

Author(s)

Herbert Braselmann

References

Franken NAP, Rodermond HM, Stap J, et al. Clonogenic assay of cells in vitro. Nature Protoc 2006;1:2315-19.

See Also

glm and family with references for generalized linear modelling, lm

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
datatab<- read.table(system.file("doc", "expl1_cellsurvcurves.txt", package="CFAssay"), header=TRUE, sep="\t")
X<- subset(datatab, cline=="okf6TERT1")
fit<- cellsurvLQfit(X) #using default options
print(fit)
print(fit$type)
print(fit$PEmethod)
#Using other options:
print(cellsurvLQfit(X, method="ls"))
print(cellsurvLQfit(X, PEmethod="fix"))
print(cellsurvLQfit(X, method="ls", PEmethod="fix"))
print(cellsurvLQfit(X, method="franken"))

Example output

method = ml 
PEmethod = fit 
       dose       dose2 
-0.51937898 -0.02102614 
Use 'print' to see detailed results 

*** Coefficients of LQ-model for cell survival *** 
method = ml 
PEmethod = fit 

Logarithmic plating efficiencies PE fitted as intercepts 
see remark in the manual, 1.2 
      Estimate Std. Error   t value     Pr(>|t|)
PEe1 -1.606686  0.1061229 -15.13986 1.112338e-17
PEe2 -1.693346  0.1090082 -15.53412 4.781145e-18
PEe3 -2.010377  0.1228551 -16.36380 8.506670e-19
PEe4 -1.869228  0.1165115 -16.04329 1.644185e-18
PEe5 -2.052405  0.1069872 -19.18365 3.828727e-21
PEe6 -2.219654  0.1333357 -16.64711 4.789596e-19
PEe7 -2.434634  0.1455642 -16.72550 4.091214e-19
PEe8 -2.109080  0.1258530 -16.75828 3.830883e-19

Shape parameters alpha and beta 
         Estimate Std. Error   t value     Pr(>|t|)
alpha -0.51937898 0.05889260 -8.819088 9.943331e-11
beta  -0.02102614 0.00978985 -2.147749 3.817362e-02

Observed and fitted plating efficiencies (%): 
     Experiment   PE PEfitted
PEe1         e1 19.0     20.1
PEe2         e2 17.3     18.4
PEe3         e3 10.0     13.4
PEe4         e4 15.0     15.4
PEe5         e5  9.2     12.8
PEe6         e6 17.0     10.9
PEe7         e7 14.3      8.8
PEe8         e8 11.5     12.1

Residual Deviance: 167.8964 
Total residual sum of weighted squares rsswTot: 164.8109 
Residual Degrees of Freedom: 38 
Dispersion parameter: 4.337128 

Fraction rssw of rsswTot per Experiment 
  Experiment  rssw perCent
1         e1  4.84     2.9
2         e2 14.91     9.0
3         e3  9.01     5.5
4         e4  4.51     2.7
5         e5 34.77    21.1
6         e6 52.22    31.7
7         e7 41.09    24.9
8         e8  3.46     2.1
[1] "cfa" "ml" 
[1] "fit"
method = ls 
PEmethod = fit 
       dose       dose2 
-0.53514763 -0.02274424 
Use 'print' to see detailed results 

*** Coefficients of LQ-model for cell survival *** 
method = ls 
PEmethod = fit 

Logarithmic plating efficiencies PE fitted as intercepts 
see remark in the manual, 1.2 
      Estimate Std. Error   t value     Pr(>|t|)
PEe1 -1.547331  0.1462255 -10.58181 6.927387e-13
PEe2 -1.638576  0.1462255 -11.20581 1.314850e-13
PEe3 -1.938002  0.1462255 -13.25351 7.956357e-16
PEe4 -1.809225  0.1462255 -12.37284 6.716913e-15
PEe5 -1.966738  0.1462255 -13.45003 5.005332e-16
PEe6 -2.342463  0.1462255 -16.01953 1.727191e-18
PEe7 -2.516963  0.1462255 -17.21289 1.554955e-19
PEe8 -2.055641  0.1462255 -14.05802 1.227136e-16

Shape parameters alpha and beta 
         Estimate Std. Error   t value     Pr(>|t|)
alpha -0.53514763 0.07216231 -7.415888 6.778935e-09
beta  -0.02274424 0.01146734 -1.983392 5.458403e-02

Observed and fitted plating efficiencies (%): 
     Experiment   PE PEfitted
PEe1         e1 19.0     21.3
PEe2         e2 17.3     19.4
PEe3         e3 10.0     14.4
PEe4         e4 15.0     16.4
PEe5         e5  9.2     14.0
PEe6         e6 17.0      9.6
PEe7         e7 14.3      8.1
PEe8         e8 11.5     12.8

Total residual sum of squares rssTot: 3.357983 
Residual Degrees of Freedom: 38 
Multiple R-squared: 0.9954213 

Fraction rss of rssTot per Experiment 
  Experiment  rss perCent
1         e1 0.07     2.2
2         e2 0.26     7.8
3         e3 0.24     7.2
4         e4 0.11     3.2
5         e5 0.57    16.9
6         e6 1.25    37.2
7         e7 0.83    24.6
8         e8 0.03     1.0
method = ml 
PEmethod = fix 
       dose       dose2 
-0.51079080 -0.02274661 
Use 'print' to see detailed results 

*** Coefficients of LQ-model for cell survival *** 
method = ml 
PEmethod = fix 

Shape parameters alpha and beta 
         Estimate Std. Error   t value     Pr(>|t|)
alpha -0.51079080 0.05783126 -8.832435 9.562192e-11
beta  -0.02274661 0.01186134 -1.917710 6.268676e-02

Residual Deviance: 399.1192 
Total residual sum of weighted squares rsswTot: 369.7449 
Residual Degrees of Freedom: 38 
Dispersion parameter: 9.730129 

Fraction rssw of rsswTot per Experiment 
  Experiment   rssw perCent
1         e1   6.39     1.7
2         e2  17.65     4.8
3         e3  43.57    11.8
4         e4   5.15     1.4
5         e5 109.36    29.6
6         e6  96.56    26.1
7         e7  86.86    23.5
8         e8   4.20     1.1
method = ls 
PEmethod = fix 
       dose       dose2 
-0.53063032 -0.02331461 
Use 'print' to see detailed results 

*** Coefficients of LQ-model for cell survival *** 
method = ls 
PEmethod = fix 

Shape parameters alpha and beta 
         Estimate Std. Error   t value     Pr(>|t|)
alpha -0.53063032 0.07510284 -7.065383 2.006471e-08
beta  -0.02331461 0.01502057 -1.552179 1.289092e-01

Total residual sum of squares rssTot: 9.398594 
Residual Degrees of Freedom: 38 
Multiple R-squared: 0.9866913 

Fraction rss of rssTot per Experiment 
  Experiment  rss perCent
1         e1 0.14     1.5
2         e2 0.33     3.5
3         e3 1.01    10.7
4         e4 0.15     1.6
5         e5 1.57    16.7
6         e6 3.25    34.6
7         e7 2.85    30.4
8         e8 0.09     1.0
method = franken 
PEmethod = fix 
      dose      dose2 
-0.4887937 -0.0219078 
Use 'print' to see detailed results 

*** Coefficients of LQ-model for cell survival *** 
method = franken 
PEmethod = fix 

Shape parameters alpha and beta 
        Estimate Std. Error   t value     Pr(>|t|)
alpha -0.4887937 0.05385806 -9.075591 4.709574e-11
beta  -0.0219078 0.01106990 -1.979043 5.509104e-02

Total residual sum of weighted squares rsswTot: 335.6884 
Residual Degrees of Freedom: 38 
Multiple R-squared: 0.9918373 

Fraction rssw of rsswTot per Experiment 
  Experiment   rssw perCent
1         e1   5.72     1.7
2         e2  11.98     3.6
3         e3  26.34     7.8
4         e4   5.23     1.6
5         e5  73.15    21.8
6         e6 107.79    32.1
7         e7  99.19    29.5
8         e8   6.28     1.9

CFAssay documentation built on Nov. 8, 2020, 11:10 p.m.