sfpmean: Pointwise mean survival fractions for curves with several...

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/sfpmean.R

Description

The function calculates mean survival fractions for curves averaged over experimental replicates. The function is employed by function plot.cellsurvLQfit for plotting observed means

Usage

1
sfpmean(X, S0=NULL)

Arguments

X

A data frame which contains columns Exp, dose, ncells, ncolonies and if S0=NULL, X has to contain a further column pe for plating efficiencies.

S0

If not NULL, a named numerical vector of length equal to the number of different experiments, i.e. length(S0)==length(unique(X$Exp)) has to be TRUE. Default is S0=NULL, i.e. undefined.

Details

In the data frame X, Exp identifies the experimental replicates and may be numeric or non-numeric. S0 may contain plating efficiencies for each replicate, resulting from function pes or from cellsurvLQfit (fitted). When S0=NULL, X must have a column with name pe, containing the plating efficiencies.

Value

A numerical matrix with two rows, the first row containing the survival fractions for each radiation dose, second row the standard deviations.

Author(s)

Herbert Braselmann

See Also

pes, cellsurvLQfit, plot.cellsurvLQfit

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
datatab <- read.table(system.file("doc", "expl1_cellsurvcurves.txt", package="CFAssay"), header=TRUE, sep="\t")
X <- subset(datatab, cline=="okf6TERT1")
## S0 from data with fucntion pes
S0 <- pes(X)$pe  #observed plating efficiencies
length(S0)==length(unique(X$Exp)) #length ok?
names(S0) <- pes(X)$Exp
sfpmean(X, S0)
## Not run: 
## S0 from LQ model fit
fit <- cellsurvLQfit(X)
fit$coef  #contains fitted log-pe
grep("Exp",names(fit$coef))
S01 <- exp(fit$coef[1:8])  #fitted pe
sfpmean(X, S01) #names of S01 still to adjust!

## End(Not run)
## Not run: sfpmean(X)  #yields an error for this data set

Example output

[1] TRUE
         dose_0     dose_1     dose_2     dose_3     dose_4      dose_6
SF    1.0900000 0.63666667 0.38800000 0.19625000 0.10933333 0.025905068
stdev 0.1036205 0.04606754 0.06697965 0.02401148 0.03161806 0.003750415
method = ml 
PEmethod = fit 
       dose       dose2 
-0.51937898 -0.02102614 
Use 'print' to see detailed results 

factor(Exp)e1 factor(Exp)e2 factor(Exp)e3 factor(Exp)e4 factor(Exp)e5 
  -1.60668602   -1.69334624   -2.01037651   -1.86922792   -2.05240465 
factor(Exp)e6 factor(Exp)e7 factor(Exp)e8          dose         dose2 
  -2.21965387   -2.43463411   -2.10907991   -0.51937898   -0.02102614 
[1] 1 2 3 4 5 6 7 8
         dose_0     dose_1     dose_2      dose_3      dose_4      dose_6
SF    0.9975485 0.57571283 0.33340514 0.178369394 0.085193618 0.021081745
stdev 0.1074320 0.03476128 0.01534523 0.009429196 0.007655484 0.002530412

CFAssay documentation built on Nov. 8, 2020, 11:10 p.m.